Appendices

A  Model Solution

A.1 Final period: ¢t = M

For both the parents and the child, the decision rules are solved using backward recur-
sion beginning from the end of the development process, time M.

Child’s problem. In period M, the child makes her choice of 7, s given the time and
budget allocation of the parents, a, s, and, if the parents are using an Internal CCT,
the contract specified by {rys, by }. Then the child’s period M problem is

‘/;,M(PM|ap,M7TM7bM) = max Alln(TM—Tp’M—TC7M)+)\21H$M+>\31H]€M
Te, M |@p, 1,7 MM

+Be e 1 B0 k1| Tenr, apars Tars bar)

where Ty is the child’s time endowment after subtracting exogenous school time sj;.
We can substitute out these two components:

E(lnk}M+1|Tc,M, Ap, M T M, bM) = InRy + 61,M IHTLM + 527]\/[ 1HT27M -+ 537]\/[ 1HT12,M
+64,M IHBM + 55,M lnchM + 56,M lnk:M,

Inzy = by +rylnt. oy

Since we assume that all parameters, including Total Factor Productivity Ry, are
known at the time of the period M decisions, there is no uncertainty present in the
production technology, allowing us to drop the expectation operator. The optimal
decision of the child is given by

“ Xorar + Acp ~
Ton(Tpn, ) = N Jr)\Z‘TMJFAQM(TM—%,M) (A-1)

= Y (rag)(Tos — Tpo01)

where A.y = Bemem+105 0. Given the properties of the production, utility and
reward functions, the choice of time in investment is independent of all of the parents’
decisions with the exception of (1) the total time they spend interacting with the
children, 7, s, the effect of which is to reduce the child’s effective time endowment, and
(2) the child’s “wage” rate s, which corresponds to the elasticity of child consumption
with respect to child study time. The fact that by; drops out will prove useful in deriving
some of the results below. Note that when r; = 0, this solution simplifies to the special
case in which the parents make a fixed transfer of x,; to the child that is not tied to
the child’s investment time. Clearly, the solution to the child’s problem is increasing in
ry and the child can be induced to spend virtually all of its time in investment as r);
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becomes arbitrarily large. However, this could never be optimal since (1) the child has
an incentive compatibility (IC) constraint that must be satisfied whenever the parents
use an ICCT scheme, and (2) even in the absence of an IC constraint, the parents would
not want their child to have zero leisure as long as they are altruistic (¢ > 0).

Parents’ problem. Given the child’s reaction function 7,,(7pa,7as), the parents
solve the following problem:

Vor(Tar) = max (b, loaes e, Kaas e @) + Bptp v In(karsn)
Qp, M T MDA

s (M (o) + Ao In(@ar) + Ag kar) + Boartenrs In(ingsr) = Verr(Tarlal o) JA-2)

where ju5; > 01is the Lagrange multiplier on the child’s IC constraint, and V. a(T'alag 1)
denotes the child’s outside option, i.e. the indirect value function evaluated at the par-
ents’ choices in the absence of an ICCT. We can substitute out (1) ¢ for the period
M budget constraint, (2) ly s, loa and [y for the individual time constraints, (3)
Inkpr4q for the production technology, and (4) 7. for the child’s optimal reaction
function derived in the previous paragraph. In order to simplify the first order con-
ditions with respect to the remaining choices {hiy, hoy, T1t, Tot, Tit, €1, T, T, b }, nOtE
that the parents jointly choose the triple {zs, 7ar,bar} subject to the reward function.
Rearranging this equation yields

by = In(zy)—ry ln(T:’M(Tp,M,rM))
= In(zy) —rayIn(yar(rar)) — ln(’fM — TpM)
Conditional on {x s, rar, 710, Tonr, Tizar b, this will pin down the optimal choice of by
Taking first order conditions with respect to {eys, x)s} and using the budget constraint

yields the following solutions for the expenditures (conditional on labor supply choices
and the multiplier on the child’s IC constraint):

Qg

= = — Y; A-3
M a3+ & + BpUp 104 + poar (A2 + BearVe vi104.01) M (A-3)
) U )
PR BpWpvi4104.0r + pnrBeprte v104,00 Yis (A-4)
a3 + & + BpUp 104 + poar (A2 + BearVe vi104.01)
A A
o, = Qg + far Az Y, (A-5)

a3 + & + BpUp 104 + poar (A2 + BearVevi104.01)

where Yy = wy aprhi v + waphop + Iy and pp > 0. It is easy to see that the fraction
of income spent on the parents’ private consumption, ¢, is strictly decreasing in ;.
Conversely, the fraction spent on the child’s consumption, x,;, is strictly increasing in
(ar under a weak condition on the primitives:

8:70}*\/, / YM _dS

>0 <= Bopv+1 — PBemWe it > —
Oling Oa, M
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Since the parents in our model are not perfectly altruistic (¢ < 1), are more patient
than children (8, > f.:) and usually (but not always in our model) care more about
future child quality than the child (Y41 > ¥et41), the left-hand side of this inequality
should typically be positive, making this condition satisfied.3!

After substituting out the (conditional) optimal choices {¢},, €3/, 23, } and the child’s
reaction function in the value function V, 5/, and after dropping some constant terms,
we are left with a “residual” maximization problem which can be decomposed into two
separate maximization problems, conditional on the Lagrange multiplier piy;:

Wp,M = max Vl,M(hl,M7 hQ,Ma T1,M, T2,M, T12,M 3 MM) + V2,M(7’M§ MM)

where the second component is given by
Vo (Tars par) = (Gs + pardn) (1 — yar (rar) + (Dpoar + piarBenr) In(yar(rar)). (A-6)

where A v = Bemtem+105m and Ap v = Bphy 41051

Unconstrained optimum. Denote the unconstrained optimal time, budget and
ICCT choices by the vector {a;77, ri7¢, bi7°}. If the multiplier y5; equals 0, the parents’
optimization problem becomes truly separable, since the two components, vy pr(ap ar)
and o p7(rar), no longer have any common components. Therefore, none of the uncon-
strained optimal time and budget choices (summarized by al{}® = {him, honr, T,
To.n, TizMs O, €nrs o)) will depend on the parents’ choice of 7. Indeed, under our
functional form assumptions, it must be the case that
At = Gpar = p

where a% s denotes the optimal time and budget allocation in the no-ICCT Stackelberg
equilibrium (where rp; = 0), and where a, s denotes the optimal time and budget
allocation in the dictatorial model, where parents (hypothetically) choose the child’s
study time directly. Conditional on parental labor supply, we can find the optimal
budget allocation by plugging in py; = 0 into Equations (A-3)-(A-5). The remaining
optimal choices can be found by maximizing the sub-function vy as(ap ) analytically.

It is convenient that the second sub-function, 5 p(737) shown in (A-6) only depends
on the reward elasticity, ry;, due to the functional form of the ICCT reward function.
The parents’ ability to implement an ICCT (assuming a slack incentive constraint for
the child) allows them to perfectly align the child’s incentives with their own altruistic
preferences by implementing the following ICCT contract:

punc Ava B SOAQM
M )\290 M)

b = In(ay) — i In(reu (725, 74°)

31Given our model estimates and random simulation draws, this condition always holds in our
analysis.
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where 74{}¢ follows from differentiating v pr(rar), and by7¢ follows from the ICCT reward

function. Note that given this contract, the child’s optimal response coincides with

what the parents would choose themselves if they were the household dictator (i.e.

unc __ 2
TC,M - TC,M)'

By complementary slackness, we should finally verify whether the child’s IC con-
straint in the parents’ problem (A-2) is indeed slack, given the parents’ unconstrained
choice vector. As stated in Proposition 1, we know that whenever the parents are using
an ICCT with r; # 0, the child’s incentive constaint must be binding in equilibrium,
thereby effectively ruling out the unconstrained equilibrium we have just derived. For
completeness, we also provide a more formal proof of Proposition 1 for a general period
ted{l, .. M}

First, we define the child’s outside option, V,(I'|a),), as her indirect value when
the parents are not using an Internal CCT scheme, i.e. when a,; = a), and r, = 0.
We prove by contradiction, i.e. by assuming that the child’s IC constraint will be slack
in the Stackelberg equilibrium with ICCT and p; = 0. From before, we know that the
optimal reaction function of the child is given by Equation (A-1). After plugging in
this reaction function and the parents’ optimal choices, we can write the child’s indirect
value function as follows:

Ve (Delayie, ri™e o) = M In(l279) + Ao In(zy™) + Az(ke) + Beiterr In(kyy1(ayi, "))
where the child’s leisure [} = (1 — Yo (rene)\ (T, — 7,4¢). Importantly, in this indirect
utility function, the child’s consumption level no longer depends on the child’s study
time. Indeed, even though the parents are offering the child an incentive scheme (or
reward function) given by (7.+; 74, by), the child realizes that irrespective of how much
she studies, the parents can always implement their first-best value of child consumption
(given by z"¢ = z) = #,) by simply readjusting (or reneging on) the value of b after
the child has chosen how much time to devote to studying. This lack of commitment
on behalf of the parents would make the child unwilling to participate in the incentive
scheme and deviate back to the no-ICCT Stackelberg equilibrium. Indeed, given our

previous result that a*?¢ = a®,, we can simplify child’s IC constraint as follows:

Dyt it

Vc,t(rt|aunc ", b)) > Vc,t(rt|ag,t)

Dt
= N ln(lfﬁc) + Bc,t¢c,t+155,t ln(Tg?C) > A\ ln(lg,t) + Bc,twqt—&—léf),t ln(Tgt)
= Mn(l = %)) + Ace In((ry™)) = ArIn(l — %(0)) + Ac e In(7:(0))

unc

First, note that this inequality is binding if and only if 7" = 0, which is only optimal
in the knife-edge case where A, = goAc,t.?’Q Second, while the right-hand side of the

32Under the relatively weak assumption on the primitives that Api > pAcy, parents prefer to
positively incentivize their children, i.e. to set r; > 0. Although our model does not rule out that
some parents may prefer to implement negative incentive schemes (r; < 0), it is never the case given
our parameter estimates and random simulation draws. Moreover, even in those cases where "¢ < 0,
the child would still prefer to deviate back to the no-ICCT equilibrium by studying more than what
the parents prefer.
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above inequality does not depend on 7;, we can show that the left-hand side is strictly
decreasing in ry, by taking the partial derivative:

3Vct(rt|%t T, bt) o O(r) [ Ay B A1 ]
Ory B oy Ly(re) 1 —y(re)
_ 0 (1) [—)\QTt]
ory Ye(re)

where we implicitly use the results that the parents’ time and budget allocation (ay’;%)
does not vary with 7, and that the child’s action does not depend on b;. Since ~;(r;)
is strictly increasing in r;, this partial derivative is zero only when r, = 0, strictly
negative whenever r;, > 0, and strictly positive whevener r, < 0. This implies that
compared to the no-ICCT equilibrium where r; = 0, the child’s value function (evalu-
ated at a,7¢) is globally maximized at r; = 0, and strictly decreases whenever r; # 0.
This means the child’s IC constraint is violated whenever p; = 0, which rules out the
unconstrained ICCT equilibrium. Therefore, the IC constraint is always binding in the

ICCT equilibrium.

Constrained optimum. Although we cannot solve for r,; in closed form, we can find
the optimal value conditional on yy, by differentiating V,, »s (see Equation (A-2)) with
respect to ry;. Assuming for now that there will be an interior solution (i.e. ry # 0),
we obtain:

AV, (Laelap,ars rars bars pr) _ Vp.m + OVpar Optns =0 (A-7)
dryg Oru Ounr Ory
8ap M __ Obyr

where we have imposed that

T Ory
that 22 ]\f < 0, since the presence of the child’s incentive constraint must decrease
the parents value relative to the unconstrained equilibrium, which coincides with the
parents’ first-best outcome. Moreover, from Proposition 1, we know that the incentive
constraint becomes binding whenever ), # 0. Since py; = 0 only if 3, = 0, this implies
that the partial derivative 8"3 is positive when ;¢ > 0, and negative when 737 < 0.
Thus, the second component in (A-7) must be negative whenever 3, > 0, and positive
whenever r;, < 0. By optimality, the first component must have the opposite sign
as the second component. Given our previous discussion of the parents’ constrained
problem and the expression given in Equation (A-6), we can derive this first component

as follows:

= 0 due to the optimality principle. We know

OV _ Ove v _ dya () |:Ap,M +umBDey Qs+ p ]
or oru drr Y (rar) 1 —ya(ru)
_ dym(ru) [Ap,M — pAcm — dorm(p + MM)]
dryy Yar(Tar)
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where we used the fact that as = @\;. Since vy (rys) is strictly increasing in ry,, we
can derive a bound on the constrained optimal value r};:

dVy mr
dTM

‘Ap,M - @AC,M’
A2 (o + fiar)

unc| _ ‘AI%M _ SDAC,M’

=0 < |ryl < < |ryg e

where ¢ is the parents’ altruism parameter. Note that as 5 approaches 0, r3, converges
to ri}¢. By plugging this bound into the child’s reaction function, the corresponding

bounds on the child’s optimal fraction of study time are:

Ap v+ parDe i Apm
d5+Ap,M+NM()\1+Ac,M)) d5‘|‘Ap7M

Ac,M
M+ Acm

ry >0 = < m(ry) <
where all inequality signs reverse for the (rare) cases where 5, < 0, i.e. when A,y <

@A, p. Without an explicit expression for p)/, we cannot characterize the constrained
ICCT optimum any further.

Conditions for Costly ICCT use. Since implementing an Internal CCT is, in our
most general model, costly for the parents, it may be optimal to not use one, by setting
ry = 0. The parents will choose to use an ICCT when the welfare gain from the
constrained equilibrium exceeds the utility cost wyy, i.e. under the following necessary
and sufficient condition:

ri 20 <= Vou(Curlal o, 7 030) — Vorr(Carlag 1) = war

where aj 5, and a% y denote the parents’ optimal time and budget allocations in the
constrained ICCT equilibrium and the no-ICCT equilibrium, respectively. Since the
child’s incentive constraint in the ICCT equilibrium is always binding, the optimal
parental choices will change whenever ry; # 0 (i.e. ay,, # a% ), preventing us from
simplifying this expression any further. In the empirical implementation, we use a
numerical solver to evaluate this necessary and sufficient condition for every household
at every child age.

We have previously argued that the unconstrained parents’ problem is separable
into two parts, where only the second component, vo(7, par) (see (A-6)) depends on
the parents’ ICCT parameter. This insight allows us to derive the following necessary
(but not sufficient) condition for the parents’ choice whether to use an ICCT:

vy #0 = wven(ry =713 =0) —ve i (rar =0, 0 =0) > wyy

(i) o - 1 —yu(0)
— A,yh(—ZH) >ahn(———) +w
par 10 Y (0) ) 2 s (1 —VM(T}\TC)) M
where the closed form for r§}¢ is known, and where v,,(0) = /\ﬁCA’MM is the child’s

optimal fraction of study time in the no-ICCT equilibrium, which is strictly smaller
than the fraction of study time in the unconstrained ICCT equilibrium, v/ (r{}¢) =
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Ap M
as5+Ap nr°
Then, the left-hand side of the second line can be interpreted as the parents’ benefit of
implementing an internal CCT which, by raising the child’s study time, will increase
child capital in the next period. The right-hand side can be interpreted as the parents’
utility cost of implementing the ICCT, comprising both the direct cost, wys, as well as
a utility loss through the reduction in the child’s leisure time, which is weighted by the
parents’ value of child leisure, a; = @\;. Conversely, in the case where r{}¢ < 0, the
parents would like to reduce the child’s study time, which now has a utility benefit in
terms of leisure, and a utility cost in terms of lost capital. Intuitively, the inequality will
be satisfied if the parents’ optimal reward elasticity is sufficiently different from 0, either
positively or negatively. However, since this necessary condition does not include the
additional utility loss the parents must incur due to the child requiring some additional
compensation in the constrained equilibrium, it is not sufficient.

Consider the most common case where the parents would choose rj;¢ > 0.

Optimal choices. Given the functional form assumptions and the presence of the
child’s incentive constraint, we cannot find closed form solutions for any of the parental
choices {h1 ., hom, TIN, Tom, Tizms CuM, Ty €, Ta, bar}. In the computational
exercise, we will use a numerical solver to find the optimal choice vector, taking into
account the possible corner solutions for labor supply. Enforcing the child’s incentive
constraint involves first solving the unconstrained parents’ problem, which (1) allows
us to verify that, in accordance with Proposition 1, the child’s IC is violated whenever
¢ # 0, and (2) provides us with a good initial guess before numerically solving
the harder constrained problem where the incentive constraint is imposed at equality.
Appendix C contains more details on this estimation procedure.

A.2 Remaining periods: t=1,....M — 1

The solution has exactly the same characteristics in the general period ¢ case. The
only adjustments to the solution occur with respect to the variables ¥;,, 7 = ¢,p,
which measure the future impacts of improvements in child quality in period ¢ and the
remaining periods in the development process. The time-varying characteristics that
appear in the solution include the production function parameters, the realizations of
wages and non-labor income in period ¢, and the discount factor of the child, which is
monotonically increasing in t. Thus the ¢-period solution is as follows:

No-ICCT Stackelberg Equilibrium. First, we solve the household problem as-
suming the parents are not using an ICCT, such that r, = 0. We denote the total

vector of optimal parental choices in the no-ICCT equilibrium as ag’t.

1. Condition on a choice vector of {hy, hoy, Tit, Toy, Ti2+}, including potential
corners for labor supply. Given these values, the household income in period ¢ is
Y, = wy 1hiy +wahey + ;. Total parental time is defined as 7,; = 714 + 7ot + T124-
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2. The optimal expenditures in the no-ICCT Stackelberg equilibrium (conditional
on labor supply) are given by

a3
c? = — — Y,
a3 + g + BpUp 4104y
0 BpWp 4104
e = —= = Y,
a3 + g + Bpp 4104y
a
0 6
T = Y,

i3 + Qg + BpUp 4104
where
Vo1 = §pou,
¢p,t = 554 + 6p667t¢p,t+la t= 1a ceey M.
The optimal study time of the child in the absence of an ICCT is given by:

A, -
_ 2t
A1+AC¢( t = Tot)

Tgt(Tp,m = 0)

where

Ac,t = ﬁc,t¢c,t+1557t7 t=1,.., M,
7~/Jc,M—s—1 = é—c)\i’)a
wc,t = >\3 + ﬁc,tdﬁ,twc,t+17 t= 1, ceey M.

3. By using the time constraints and the production technology function, we find the
leisure of each individual (19 ,,19,,12,) and future child capital, k7, ;. This allows
us to define the parental value function:

Vp,t(rtv ag,t) = ap(l(l),tv lg,m Cgv ktv lg,t’ :L'?) + 5p¢p,t+1 1n(k1?+1)

We use a numerical solver to maximize this function with respect to the remaining
choices for which we cannot find closed form solutions: {hi+, hot, T1t, Tot, Ti2t}

4. Finally, we evaluate the child’s value function at the no-ICCT Stackelberg equi-
librium to define the child’s outside option:

Ve (Tt ag,t) =M ln(lgt) + Ao ln(a:?) + AsIn(ks) + Bei¥eii1 ln(ktgﬂ)

Constrained ICCT Equilibrium. Now, we solve the household’s problem if the
parents are using an ICCT, summarized by the reward function z;(7.4; 7, b:). If the
parents choose a strictly positive reward elasticiticy (r; > 0), we know by Proposition
1 that the child’s incentive compatibility constraint must be binding. Although some
parents in our model might theoretically prefer to set a negative reward elasticity (see
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above), this is never the case for our estimates and random simulation draws. Therefore,

we can abstract from those cases in the empirical implementation. We denote the vector

of optimal parental time, budget and ICCT choices in this equilibrium by {a3 ,, 7}, b} }.

In the constrained optimum, we no longer have closed form solutions for any of the

parental choices. To simplify the numerical solution, we first find the unconstrained

parents’ optimum, which is alonst i(kantical to the no-ICCT equilibrium, except now
unc __ p,t —PRct

(1) the parents choose 7}"¢ = e > 0, and (2) consequently, the child studies

more. Using this as an initial guess, we then solve the constrained problem as follows:
1. Condition on a choice vector of {hy, hoy, 714, Tot, T124, €1, 71}, including potential
corners for labor supply, and restricting r; to be strictly positive. Given these
values, the household income in period ¢ is Y; = wyhiy + warhey + 1. Total
parental time is defined as 7, = 71+ + 724 + T124.
2. The optimal reaction of the child is given by
% )\QTt + A t ~
Tet(TptsTt) = (T — 7pe)

)\1 + )\Qrt + Ac,t
= %)L = Tp0)

3. By using the time constraints, we find each individuals leisure (17,15, [} ,). Since
we know all the inputs {714, T2y, T124, €, Ter, ke}, we can also find future child
quality, k;, ;. This allows us to invert the child’s binding IC constraint, to find
the amount of child consumption needed to make the child indifferent:

1

() = 1 (Ver(Ter ) = MIn(iz,) = Aaln(he) — Bt In(i) )

Finally, parental consumption c¢; follows from the budget constraint, and b} fan
be backed out from the ICCT reward function:

by =In(x}) —ry ln(T:t)
4. The parents’ value (not including the ICCT cost) can then be defined as:

V;?J(Fb a;,t’ Tt b:) = ap( T,t’ ;7157 6:7 kt? l:,m ‘T:) + ﬁpwpyt-ﬁ-l ln(k:—i—l)

We use a numerical solver to to maximize this function with respect to the re-
maining choices for which we cannot find closed form solutions: {hi+, hat, 714,

Toty T12,t5 €t Tt}-

5. By construction, the child is indifferent between the two equilibria. The parents
will implement the ICCT equilibrium if and only if

Voi(Tey a7, b)) — wi > Vo u(Try ap )
where wy is the per-period utility cost of implementing the ICCT.

Appendix C contains more details on the estimation procedure.
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B Data Appendix

B.1 Sample criteria

All our results are based on a selected sample of households that satisfy the following
criteria:

(1) All households are intact over the observed period (i.e. only stable two-parent
households).

(2) Houscholds have either one or two children. We select only one child from each
household (see below).

(3) All children are biological; no adopted children, no step-parents.

(4) All selected children are at least three years old in 1997, because we need a valid
initial Letter Word (LW) score observation.

(5) All selected children have an observed LW score in 1997 and in 2002. Some of these
also have an observed LW score in 2007 as well, although it is not required.

(6) If a household has two eligible siblings satisfying requirements (4) and (5), we select
the youngest sibling by default. This has two potential advantages: parental labor
supply is probably more responsive to the age of the youngest sibling than the age of
the oldest sibling, and we also have a higher chance of observing the youngest sibling
in 2007, which enriches the total sample.

(7) We only keep data rows for which the selected child’s age is between 0 and 16.

This sample selection approach results in a final sample of N = 247 children or house-
holds. We have exactly 17 data rows per child, and we load the following variables
after cleaning the data in Stata (not all of which are used in the code): (1) household
identifier, (2) year, (3) number of child, (4) mother’s age, (5) father’s age, (6) family
size, (7) mother’s education, (8) mother’s weekly labor, (9) mother’s hourly wage, (10)
father’s weekly labor, (11) father’s hourly wage, (12) weekly non-labor income, (13)
child’s age, (14) Letter Word raw score, (15) father’s education, (16) joint parental
active time, (17) mother’s active time, (18) father’s active time, (19) total school time,
(20) regular school time, (21) other school time, (22) child’s effective time endowment,
(23) child’s age in 1997.

B.2 Censoring and truncation

Actual data. Obvious reporting errors in the parental wage and labor supply data
were resolved in the following way. For a given spouse in a given year, we replace the
reported labor income and labor supply by missing values if (1) the reported labor
income is positive but the reported labor hours are 0, (2) if the reported labor hours
are positive but the labor income is 0, or (3) if either reported labor hours or labor
income is missing.

If the non-labor income in any given year (calculated as the residual yearly income
after subtracting both spouses’ labor income) was either negative or above 1000 dollars
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per week, we replace all the corresponding hourly wage, labor hours and non-labor
income data by missing values for that year.

If the labor supply for a given spouse was above 80 hours per week, we truncate
that observation at 80. If an hourly wage rate for a given spouse was either less than $5
per hour or more than $150 per hour, we replace that observation by a missing value.
However, we keep all the other information pertaining to that household.

Simulated data. All simulated data are being censored in exactly the same way as
the original data. Hence, if the original data contain a missing value or a censored
observation for some variable at some child age, then the simulated data will have
a missing value in the corresponding cell (i.e. in all R corresponding cells, since we
simulate R > 1 data sets). Similarly, whenever the simulations yields a corner solution
for labor supply, we censor the corresponding simulated wage. However, we do not
censor extreme simulated wage draws (i.e. below $5 or above $150 per hour).

Given our estimation procedure for the non-labor income process, simulated non-
labor income draws cannot be negative. In the event that they exceed $1000 per week,
we truncate that draw at $1000. Note that we cannot replace these extreme draws by
a missing value (as we did for the actual data), since we always need a real-numbered
(non-missing) value of non-labor income to simulate household choices in each period.

B.3 School time

We believe the reported school time data from the CDS to be relatively noisy, as can
be seen in Table B-1, which shows the distribution of reported school time at each child
age t. Given the implausibly wide data range of these reported school times, we only
use the median of these reported values (conditional on child age t), and use that as a
measure to define the child’s effective time endowment at age t as T.; = 112 —med(s;).
To construct school time s;, we use combined CDS data from 1997, 2002 and 2007,
and define total school time as the sum of “regular” school time and “other” school
time. These two subcomponents were constructed based on the following CDS time
categories:

1. Regular school time: All time use with activity code

e 5090: Student (full-time); attending classes; school if full-time student.
e 5091: Daycare/nursery school for children not in school.

e 5092-5093: School field trips inside/outside of regular school hours.
2. Other school time: all activities taking place at school with activity code

e 5190-5193: Other classes, courses, lectures, being tutored.

e 5680: Daycare/nursery before or after school only.
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e 6130-6138: Attending a before or after school club (math, science, drama,
debate, band, ...).

Detailed descriptive statistics of these schooling components are available upon request.
Finally, we note that time spent with babysitters, time spent at daycare before or after
school, or time spent in home care from a non-household member (CDS activity code
4870) is not counted as school time.

Table B-1: Total School Time s; by Child Age

Mean Std. Min P25 Median P75 Max NrZeros NrObs

t=3 11.250 17.866 0.000  0.000 0.000 26.042 47.083 6 9
t= 9.845 16.152 0.000  0.000 0.000 15.833 55.000 23 36
= 13.725 16.830 0.000  0.000 0.000 29.583 56.250 21 40
t= 24.534 17.404 0.000  0.000 32.500 37.083 47.083 9 34
t= 31.739  9.956 0.000 32.500 33.333  35.000 45.417 1 23
t=8 28274 14.201 0.000 30.833 33.458 35.000 48.333 6 38
t= 31.842 12.055 0.000 30.833 34.167 37.812 50.000 5 29
t=10 31.719 10.948 0.000 31.667 33.750  36.250 47.500 4 62
t=11 30.629 14.027 0.000 30.771 34.583 38.750 56.833 6 23
t=12 32.826 16.841 0.000 33.333 38.333  42.500 53.750 4 22
t=13 31.948 12.409 0.000 32.500 34.583 37.604 45.833 4 37
t=14 37.560 14.888 0.000 35.000 37.125 43.750 74.833 5 54
t=15 35.908 15.003 0.000 34.375 37.500 43.750 60.833 6 26
t=16 33.638 17.220 0.000 31.042 37.917 45.000 65.000 8 49
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C Estimation, Identification, and Computation De-
tails

C.1 Computation of Model Solution

Given some vector of model parameters, we next describe the model solution algorithm
for a given household 7 in the dataset. For each household there is a vector of observable
characteristics X, including parental age (at birth) and parental education levels. In
addition, we observe a measure of the child’s cognitive skills at some child initial age
(where the age of the initial test score observation can vary across children).

For each household in the dataset, and starting at the initial child age, we draw r =
1,..., R wage offer and non-labor income shocks, test score measure shocks, preferences.
For each simulation draw, the model solution takes the following steps:

1. Solve for the latent cognitive skills given the draw.

2. Parental labor supply falls into 1 of 4 possible cases:

(a) th > 0, hgﬂg >0

(b) hl,t = O, hzﬂg >0

(C) hl,t > 0, hg,t =0
)

(d) hig=0,ho; =0

For each of the four labor supply cases, we numerically solve the optimal time
allocation vector (hy ¢, hot, T1 ¢, To g, Ti2,) and, for the ICCT model, also for (e, ;).
For the case where both mother and father have positive labor hours, there are 5
free choice variables in the no-ICCT model, and 7 choice variables in the ICCT
model. We use the Newton-Raphson algorithm to solve for the utility maximizing
choices. We constrain each choice appropriately using the logit transformaton:

__cxp(pi)
1+ exp(p;)

and search over the p; € (—oo, 00) parameters for i =1,...,7.

€ (0,1),

)

For each ¢; point, we define the choice variables sequentially as
(a) Total parental investment time 7,; = ¢ (Tt — 5).
(

)
b) Mother’s active time 71 ; = ga7,.
(c) Father’s active time 7o, = q3(7p: — T1.t)-
)
)

(d) Mother’s labor time hy; = qu(T — 714 — Ti24)

(e) Father’s labor time hoy = ¢5(T — ot — T124)
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(f) For the ICCT model: child expenditures e; = ¢gY;, where Y, = wyhyy +
wy thay + I;. For the no-ICCT model, we have a closed-form solution for e,
as a function of (hyy, hoy).

(g) For the ICCT model: reward elasticity r; = ¢77maz, Where rp,q., = 20. For
the no-ICCT model, we set r, = 0.

This ensures that all parental time choices (including joint parental time 792, =
Tpt — T1t — Ta) are strictly positive and satisfy the time and budget constraints.
For each time allocation choice, we compute 7.(7,+, ) using the child’s reaction
function.

3. In the no-ICCT model, we find z;, ¢; and e; using the closed form solutions derived
above. After defining k41, we can define the child’s outside option, V,2,(I';|ay ,).
In the constrained ICCT model, we numerically solve for e;, so we can (1) use the
technology function to define k;,4 conditional on all inputs, (2) find z; by inverting
the child’s binding incentive compatibility constraint conditional on the outside
option (see also Appendix A), and (3) find ¢ through the budget constraint.

4. We solve for the utility maximizing choices for all possible labor supply cases and
retain the highest utility choices for both the no-ICCT and ICCT models. In the
benchmark model with endogenous costly ICCT choice, we retain those choices
which maximize the parents’ value (net of the ICCT cost wy).

5. With the optimal choices computed, we use the rth measurement shock to com-
pute the measure k, ;.. Then, we reiterate by updating ¢ to ¢ + 1 and latent
capital k; to kiyq.

C.2 Identification

In this sub-section, we provide more details on several of the more involved identification
issues.

Production Technology: Measurement Error In order to focus on key issues,
consider a simplified version of our production technology, where Ink = In R + §InT,
with k representing latent cognitive ability, R is TFP, and 7 is an observed input with
associated parameter . Consider the following conditional mean of the observed test
score k*, given some level of the observed input.

exp(A+ A InR+ A\dlnT)
I+exp(Aog+ A InR+ M\dlnT)
We observe the left-hand side of this expression in the data, and the right-hand side is
a function of the primitives we would like to identify.
It is clear from this expression that we cannot separately identify the production
function primitives (R, J) from the measurement parameters (Ao, A1). This is a generic

E(K|r) = NQ (C-1)
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problem of indeterminacy due to the fact that latent child quality/skill £ does not have
any natural units. Identification requires some normalization to fix the location and
scale of the latent variable. We normalize Aoy = 0 and \;; = 1 for all ¢, and proceed to
identify the production primitives up to this normalization.
First, consider evaluating this conditional expectation at the point 7 = 1, so that
R
Ek =1 =NQ——
(]r = 1) = NQ——
Given the number of test questions N@Q, we identify the TFP term R. Next, we identify
9 from the difference in mean test scores for two values of the input 7 € {1, b}, for b # 1:

exp(lnR+dInd) R
l+exp(InR+6Inb) 1+ R

We can extend this approach to any number of multiple observed inputs.

Ek*|Tr=0b)— Ek*|T=1) = NQ{ }

Production Technology: Unobserved Expenditures In our data, in contrast
to the time inputs, child expenditures are not observed directly (the PSID-CDS data
provides some expenditure data but is likely incomplete). To identify the productivity
of the unobserved child expenditure input, we require a different identification strategy
from the one we utilized for the observed time inputs. Consider two households with the
same observed time inputs, but who differ in their household income (due to differences
in labor or non-labor income). Given child expenditures are a normal good, this implies
that the higher income household has larger expenditures on children. Expanding our
simplified production function notation to include an expenditure input e and observed
household income Y, we can construct the following conditional moment of the observed
test scores:

exp(InR+ 6, In7+ 6. FE(InelY))
l+exp(lnR+6;In7+ 6. E(InelY))

E(InelY) is the expected (log) expenditure for a household of income Y. Building on
the analysis above, comparing households with different observed incomes then allows
us to identify this term §.E(Ine|Y’) for any Y in the support of our data.

Our task is then to separately identify the productivity parameter . from the unob-
served average level of expenditure by income E(Ine|Y)). We separately identify these
two components using the model structure, in particular the restrictions implied by
the budget constraint and from observed household choices. From the solution to our
model, the optimal expenditure on children is given by e = A.Y, where A, € (0,1) is
the income share spent on children, a non-linear function of the primitive household
preferences and technology. A. is identified jointly with the other household param-
eters, with the key parameters comprising this share parameter (i.e. the household
preference for consumption relative to the taste for child skills) identified from the
observed household time allocation (i.e. time with children and labor supply).

E(k*|T,Y)=NQ
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Production Technology: Latent Skill Distribution We also need to identify the
distribution of latent skills because they serve as input to the production process, not
only as an output. For each child we observe measures of child quality for at least two
different ages. We use the first measure of child quality as an initial condition. However,
to solve the model and identify the production technology, we require an initial level of
latent child quality k., not the measure k}.

Given the measurement error assumptions, the probability of answering a question
correctly p is distributed according to the Beta distribution, with parameters (1 +
kf, (NQ — kf) + 1), where kf is the observed number of correct answers out of the
NQ@ = 57 items. For any given realization of p (given k;), p = p, we then invert the
normalized measurement equation (2) to obtain a realized value of latent child quality:

oy = 2

1—=p
Repeatedly drawing from the Beta distribution given the observed measure then pro-
vides a simulated distribution of latent child quality values. From these initial values
of k;, we then begin the construction of each sample path, recursively substituting the
latent k; values and other endogenous inputs determining latent k; ;. When we get to
the period of the second measurement, at which time the child is of age ¢’ > t, the ob-
served test score is a draw from a Binomial distribution with parameters (NQ, p(ky)),
as described above.

C.3 Estimator

For the same household 7, this process is repeated S times, so that in the end we have
S x N sample paths. Using the simulated data set, we then compute the analogous
simulated sample characteristics to those determined from the actual data sample.
The characteristics of any simulated sample are determined by 2, the vector of all
primitive parameters that characterize the model, and the actual vector of pseudo-
random number draws made in generating the sample paths. Denote the simulated
sample characteristics generated under the parameter vector Q by M, 5(€2). The Method
of Simulated Moments (MSM) estimator of 2 is then given by

Qsnw = arg mén(MN — Ms(Q))Wy(My — Ms()),

where Wy is a symmetric, positive-definite weighting matrix.*® Given random sampling
from the population of married households with a given number of children (one or
two, in our case), we have plimy_, . My = M. The weighting matrix, Wy, is simply
the inverse of the covariance matrix of My, which is estimated by resampling the data.

33Simulation in our context is used to solve the computationally intensive integration problem. Our
choice of MSM vs. an alternative simulation estimator, for example simulated maximum likelihood
(SMLE) is due the greater flexibility that the MSM estimator offers in combining data from multiple
sources with different sampling schemes.
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We computed the MF; vector for each of @) resamples of the original N data points, and
the covariance matrix of My is given by

Ie. -1
Wy = (Q—l > (MF, — My)(MF, - MN)’) .

The number of draws, @), was set at 200.

Given that the simulated moments are non-linear functions of the simulated draws
so that Mg is biased for fixed S, for consistency of the MSM estimator we require that
S also grow indefinitely large. Let the true value of the parameter vector characterizing
the model be denoted by €. Then plimg_, ]\;[S, ~N(20) = Mn(€p). Given identification
and these regularity conditions,

plim QS, ~w = €1 for any positive definite W.

N—00,S—0

Since Wy is positive definite by construction, our estimator €2g xw, is consistent as
well. We have not utilized the asymptotically optimal weighting matrix in this case
due to the computational cost and issues regarding the differentiability of the objective
function given the crude simulator we use. This does not seem to be a major concern
since virtually all of the parameters are precisely estimated with the exception of those
which we know from our earlier discussion to be tenuously identified in a data set that
is the size of ours.
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D Additional Tables and Figures

Figure D-1: Distribution of Child Self-investment Time by Age
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Source: PSID-CDS combined sample from 1997, 2002 and 2007 interviews.

Notes: Within each child age category, the vertical bars represent the fraction of
households whose reported child self-investment time was between 0 — 1 hours, 1 — 4
hours, 4 — 7 hours, 7 — 10 hours, or more than 10 hours per week.
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Hours per week

Source: PSID-CDS combined sample from 1997, 2002 and 2007 interviews.
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Figure D-2: Boxplots of Child Self-investment Time by Age
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Notes: The left panel plots the distribution of the reported weekly child study time for
each child age category. The right panel shows child study time as a fraction of total
investment time, defined as the sum of child study time and all active time with either
or both of the parents.
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Figure D-3: The Effect of Household Income on Productive Time Inputs and Test
Scores

Estimated slope coefficient
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Dependent variables

Source: PSID-CDS combined sample from 1997, 2002 and 2007 interviews and PSID
core data between 1986 and 2010.

Notes: We regress various weekly time inputs and test scores on weekly household
income (in thousands of dollars, averaged across all observed years). All regressions also
include child age fixed effects. We plot the estimated slope coefficients on income and
their corresponding 95% confidence intervals. The dependent variables are (from left to
right): (1) the child’s self-investment time, 7., (2) mother’s active time, 71, (3) father’s
active time, 7, (4) joint parental time, 712, (5) total parental time, 7, = 7 + 72 + T2,
(6) total investment time, 73, = 7. + 7, and (7) the child’s raw Letter Word score, LW.
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Figure D-4: Simulated and Actual Average Child’s Letter Word Score
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Source: PSID-CDS combined sample from 1997, 2002 and 2007 interviews and PSID

core data between 1986 and 2010.
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Figure D-5: Parental Labor Supply and LFP by Child Age

(a) Working Mother’s Labor Supply (b) Working Father’s Labor Supply
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Figure D-6: Productive Time Inputs by Child Age
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(b) Father’s Active Time
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Figure D-7: Parental Hourly Wages by Parental Age and Education

(a) Mother’s Hourly Wage, by Age
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(b) Mother’s Hourly Wage, by Education
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Figure D-8: Weekly Non-Labor Income by Parents’ Age and Education

(a) All, by Father’s Age
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(c) Fraction > 0, by Fa-
ther’s Age
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Figure D-9: Expenditures, Leisure and Internal CCT Use by Child Age

(a) Consumption, Expenditures and Income
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Table D-1:

Data Correlations

Child Ages 9-12 13-16
Letter Word Score, Child time 0.264 0.128
(0.069) (0.071)

Letter Word Score, Mother’s Educ. 0.245 0.265
(0.068) (0.068)

Letter Word Score, Father’s Educ. 0.301 0.342
(0.067) (0.066)

Letter Word Score, HH Income 0.325 0.287
(0.076) (0.077)

Child time, Mother’s Educ. 0.078 0.160
(0.072) (0.071)

Child time, Father’s Educ. 0.095 0.283
(0.071) (0.069)

Child time, HH Income 0.145 0.280
(0.082) (0.079)

Source: PSID-CDS combined sample from 1997, 2002 and 2007 interviews and PSID
core data between 1986 and 2010. To alleviate the missing data problem at young
child ages, “HH income” is defined as the average total household income within each
relevant child age bin. Standard Errors of the correlations are between brackets, and

n—2

are defined as SE, = 4/ L2
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Table D-2: Technology Parameter Estimates

Estimate SE
Mother’s Active Time (6;) Intercept 71 ¢ -0.244 (0.03502)
Slope 711 10.252 (0.00683)
Mother’s Educ. 712 -0.001 (0.00007)
Father’s Active Time (d5) Intercept 720 -1.662 (0.04973)
Slope 72 1 -0.239 (0.00846)
Father’s Educ. 7,2 0.042 (0.00276)
Joint Parental Time (d3) Intercept 73 -1.259 (0.06380)
Slope 731 -0.133 (0.00127)
Mother’s Educ. 732 0.020 (0.00219)
Father’s Educ. 733 0.018 (0.00100)
Child Expenditures (d4) Intercept 740 -4.219 (0.17291)
Slope 741 -0.053 (0.00118)
Child’s Self-Investment Time (J5) Intercept 7s 0 -7.930 (0.13529)
Slope 751 0.249 (0.00942)
Last Period’s Child Quality (Jg) Intercept 6 0 -1.644 (0.01502)
Slope 6 1 0.264 (0.00170)
Total Factor Productivity (R;) V7.0 0.47365 (0.00677)
Vo1 1.01128  (0.00414)
Yoo 1.44493  (0.13486)
Yos 8.24483  (0.10487)

) .. o exp(7i,0+7i,1 (t—1))
Notes: Productivity parameters take the form ¢,; = 0.01 + O.99exp(,y D) for all

t=1,...,6 and t = 1,...,16. Total Factor Productivity parameters take the form R, =

V7,1 77,0 .
V7.0 + Troperati—ra) SEs are standard errors computed using a cluster bootstrap

sampling each household with replacement.
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