
A Appendix

A.1 Supplementary Figures and Tables

Figure A1: EFMP Eligibility Flowchart

EFMP/Plus-Up Flow Chart

June 22, 2017California Air Resources Board

10

Functional Vehicle
Income Eligible

DAC?

EFMP

EFMP 
Plus-Up

Purchase
Replacement 

Vehicle

Consumer 
Education & 
Protections

Scrap Old 
Vehicle

YesNoNot 
Eligible

Yes

No
$4500 Max

$9500 Max

Consumer Applies

Source: https://www.arb.ca.gov/board/books/2017/062217/17-6-1pres.pdf

32



Figure A2: CalEnviroScreen Components

Figure A3: DACs and AQMD borders, Major Metro Areas

(a) Los Angeles (b) Sacramento

(c) San Francisco (d) San Jose
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A.2 Instrumental Variables

Our primary variables, EFMP-share of total transactions and the average subsidy across all

transactions, are normalized by the total quantity of electric vehicles in a zip*quarter. This

creates a structural endogeneity between the error term and the dependent variable, most clear

in regressions where the dependent variable is log of total transactions. When constructing

an instrument, the relevant exclusion restriction is that the error term is uncorrelated with the

instrument. A necessary condition for the exclusion restriction to hold is that contemporaneous

quantities in a zip code does not enter the construction of the instrument, either directly or

indirectly.

Formally, denoting the number of post-period quarters as T, the quarter in which the EFMP

program becomes active as t∗ and the average number of transactions in zip z in quarter t as

Qzt = ∑i 1(zip = z,time = t), we construct our preferred instrument for EFMP-share as:

Pre f erredIVzt =
∑i 1(Subsidyizt > 0, zip = z, time = t)

∑r 6=t,r≥t∗ Qzr
T−1

∑x 6=z Qxt
∑r≥t∗ ∑x 6=z Qxr/T−1

(16)

The numerator of the instrument is identical to the numerator of EFMP-share. On the other

hand, the first term in the denominator is the average number of total transactions in zip z in

the post period, leaving out the current period. This captures largely cross-sectional variation

across zip codes reflecting how many EVs are typically purchased in a location. The second

term is the ratio of contemporaneous sales in all other zip codes in the district, to the average

sales in all quarters except this one. This largely captures time-series variation with regards to

EV sales in the air district. Note that this instrument excludes contemporaneous quantities in

a zip code at time t. Absent autocorrelation or spatial correlation of preferences, which would

lead contemporaneous quantities in a zip code to be either correlated with the former or latter,

respectively.

We also construct three alternative instruments. The first two relax the assumptions of

spatial correlation and autocorrelation of preferences, respectively. Formally,

AlternativeIV1zt =
∑i 1(Subsidyizt > 0, zip = z, time = t)

∑r 6=t,r≥t∗ Qzr
T−1

(17)

AlternativeIV2zt =
∑i 1(Subsidyizt > 0, zip = z, time = t)

∑x 6=z Qxt
∑r≥t∗ ∑x 6=z Qxr/T−1

(18)

Alternative IV 1 is identical to our preferred instrument, but excludes the time-series variation

provided by average EV sales of other zip in district. If we worry that spatial correlation of

sales invalidates our preferred instrument, alternative IV 1 does not rely on contemporaneous
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sales at all. In a similar fashion, alternative IV 2 excludes the cross-sectional variation provided

by the average sales in the zip leaving out contemporaneous sales, allowing for autocorrelation

in sales.

Finally, the third alternative instrument is a traditional shift-share instrument, interacting

cross-sectional variation in the fraction of households in the zip code below 225% of the federal

poverty line with time-series variation in either state-wide EFMP share or state-wide mean

EFMP subsidy.

A.3 Income Distribution Estimation

Section 2 describes the EFMP the structure of discontinuities in income related to the EFMP’s

means-testing incentive structure, which for our regression discontinuity design, requires esti-

mating the proportion of the population around the means-tested discontinuity. Below is the

generalized equation for estimating the treatment effect at the discontinuity,

τc = E
[

Pcj ,1 − Pcj ,0

∣∣∣ Inci ∼ cj

]
︸ ︷︷ ︸

treatment effect

Pr
[
Inci ∼ cj

]︸ ︷︷ ︸
population weight

,

where cj is the discontinuity in income leading to different subsidy levels, and Inci is the in-

come of individual i around the discontinuity.

As researchers we cannot observe micro-level data of the proportion of individuals around

the discontinuity at the same geographic resolution26 as the program, and thus we have devel-

oped a method of using Census data to approximate tract-level income distributions. Follow-

ing Salem and Mount’s (1974)27 use of the lognormal and generalized gamma distributions,

we construct income distributions for each census tract using median income and its standard

deviation from data provided by the Census Bureau. Then from the income distributions we

then are able to calculate the population weight for the RDD.

A.3.1 Data

The data comes from the American Census Bureau’s 5-year American Community Survey

(ACS). The primary data set is census tract-level median income and the standard deviation

for households separated by the number of occupants.28 The data is primarily drawn from the

2010 ACS, which coincides with the decennial Census survey, providing coverage of 98.9% of

26We observe the subsidy and sales at the ZIP- and Census tract-level.
27Salem, Ali BZ, and T. D. Mount. ”A convenient descriptive model of income distribution: the gamma density.”

Econometrica: journal of the Econometric Society (1974): 1115-1127.
28The set of household occupant sizes are separated into the set {1, 2, 3, 4, 5, 6, 7+}.
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census tracts in California. Data will be compared to the 2015 ACS data, however 51.5% of data

is missing for the 2015 vintage.

Furthermore, additional data will be included as constraints or tests, including the number

of households in different regions of the federal poverty level (FPL), e.g. 100-125%, and the

number of households in different income ranges, e.g. $40,000-$44,999.

Lastly, the Census Bureau releases the Integrated Public Use Microdata Series (IPUMS) at

the county-level, in which we observe the true mass of individuals that are from 0%-500% of

FPL. This data is used to compare the estimation procedures for the lognormal and generalized

gamma distributions, which is necessary since we do not observe micro-level data at a higher

resolution than the county-level.

A.3.2 Estimation

The estimation procedure occurs in three separate work flows to produce tract-level income

distributions. First, the Census ACS data is collected and transformed from $2011 US Dollars

to a corresponding percent of the FPL, and the IPUMS data is collected and binned by house-

hold size. Starting with a general check, we take each county within our study region and run

a maximum likelihood routine to estimate the the lognormal and generalized gamma distribu-

tions on the IPUMS data. These distributions are used to determine the precision of fit, and to

be used later to check the tract-level estimates.

Second, estimating tract level distributions for the the lognormal, we use the delta method,

however the estimation procedure described below will be used to estimate the lognormal if

necessary.

The last stage of the estimation procedure follows in four steps. (1) Using Salem and Mount

(1974) we take the tract-level estimates and use a basic heuristic to transform the median and

standard deviation parameters into a guess of the two (shape and scale) parameters for the

generalized gamma distribution. (2) With the initial guess, we then take 10,000 random draws

from the generalized gamma distribution and use a generalized method of moments (GMM)

estimator with the moment conditions,

E

med [ACSi]− ˆmed [γn(αn, λn)]

Var [ACSi]− ˆVar [γn(αn, λn)]

 = 0.

With med [ACSi] and Var(ACSi) as the median and variance estimates from the Census Bureau,

and γn(·) as the iterate value n ∈ {0, 1, . . . , N} of the generalized gamma distribution. Then,

(3) the previous step is repeated until the estimates of the shape and scale converge to a desired
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tolerance. The GMM procedure estimates the distribution function for all census tracts jointly

to increase the stability of estimation. Lastly, (4) the distribution function is used to estimate the

number of individuals at the tract-level whom possess income levels in the tiers of the EFMP.

Once all census tracts have been estimated, then we will use the additional data to estimate

accuracy. One concern is that we cannot directly observe the income distribution at each census

tract, and moreover do not have overlapping data in which to use as direct constraints on the

estimation procedure. For example, at each tract we know the number of people in different

regions of the FPL and the number of households in different income brackets, however we do

not know the number of occupants of the households. Therefore, the data will be tested against

the companion data sets, but techniques have not yet been developed to directly incorporate

the constraints.

Once distributions have been estimated and checked against related data, we will then

possess weights to precisely estimate the treatment effects across all the discontinuities in the

Enhanced Fleet Modernization Program.

A.4 Subsidy Bill Calculation Details

In this section we describe how the subsidy bill estimates are calculated. First we calculate a

net-of-subsidy growth rate of EVs in California and use this trend as a guide for what may

happen in the absence of future subsidies. To the extent the projected cumulative EV regis-

tration count in 2025 using the net-of-subsidy growth rate falls short of 1.5 million, demand

for these cars must be stimulated via subsidies. We use the mass-market demand elasticity

estimates that are the central contribution of this paper to retrieve the subsidy bill that would

allow California to reach the 1.5 million EVs by 2025 goal.

Table A2: EV Growth Rates: Subsidy and Net-of-Subsidy Estimates
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To calculate the baseline EV growth rate we begin with data on EV registration growth in

California from 2013-2017, which is shown in Table A2 (the “Cumulative EVs” column). This

growth combines a baseline growth rate (that would have occurred in the absence of subsidies)

and the incremental demand that was induced by subsidies. The column “Net-of-Subsidy

Sales Estimate” reflects our estimate of no-subsidy sales. For the purposes of this calculation

we consider California and federal EV credits and rebates, which sum to $10,000 for most EVs

during this period, and assume complete pass-through to consumers.29 We then assume a

subsidy elasticity of demand of -3.9 (our preferred estimate from this paper) and apply all of

this to a $35,000 new EV price, reflecting the fact that the vast majority of EVs sold through 2017

were new. This allows us to net out subsidy-induced growth from baseline growth. Finally, we

assume that 10 percent of the EV fleet is removed from the California fleet (e.g. via retirements

and exports) each year beginning in 2020.

For the purposes of projecting the baseline growth rate into the future, it is natural to expect

that it will continue to decline. This is consistent with an increase in the absolute number of

EVs sold that is compared to an increasing cumulative fleet size. Since the rate of decline in the

growth rate is not knowable, we present subsidy bill estimates for baseline growth rates rang-

ing from 10 to 16 percent. Table 6 reflects the importance of this key parameter in determining

the subsidy bill: moving from a 14 to 10 percent baseline growth rate more than doubles the

required subsidy bill.

29There were other monetary and non-monetary subsidies during this period as well, including the potentially-large
ZEV mandate credits. Quantifying these is difficult, and omitting them from our baseline growth rate calculation will
have the effect of biasing the estimate of this rate upwards.
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