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Supplemental Appendix to “Forecasting with Dynamic
Panel Data Models”

Laura Liu, Hyungsik Roger Moon, and Frank Schorfheide

A Theoretical Derivations and Proofs

A.1 Proofs for Section 3.2

A.1.1 Preliminaries

Throughout the proofs, we use the notation € for a small positive constant such that
0 <e<e.

In addition, we will make use of the following two lemmas.

Lemma A.1 If Ay(7w) = 0yx(NT) and By () = 0y, x(NT), then Cn(7) = Ax(m)+Bn(7) =
Our(NT).

Proof of Lemma A.1. Take an arbitrary ¢ > 0. We need to show that there exists a

sequence 7% (€) such that
N=Cn(m) < niy(e).

Write
N760N<7T) = N7€<AN(7T) + BN<7T)>

Because Ay and By are subpolynomial, there exist sequences 7% (¢) and n% () such that
N=(An(7) + By(m)) < ny(€) + 1x(e).

Thus, we can choose 1% (€) = n%(€) + n%(€) — 0 to establish the claim. W

Lemma A.2 If Ay(7) = 0yx(NT) and By(7) = 0ux(NT), then Cn(mw) = Ay(m)By(7) =
Our(NT).
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Proof of Lemma A.2. Take an arbitrary ¢ > 0. We need to show that there exists a

sequence 7% (€) such that
N™Cn(m) < ny(e)-

Write
N=Cy(m) = (N2 An (7)) (N~/*By(7)).

Because Ay and By are subpolynomial, there exist sequences 7% (¢/2) and % (¢/2) such that
(N=2 A (m) (N2 By (m)) < 1 (e/2)nf (e/2).

Thus, we can choose 1% (€) = n%(e/2)n%(€/2) — 0 to establish the claim. W

A.1.2 Main Theorem

Proof of Theorem 3.7. The goal is to prove that for any given ¢y > 0

Ry (Y 5m) — R
lim sup sup N7 7) v () <0, (A1)

N—oo mell NE)M [\ — B [M])2] + Neo —

where

~ ~

N YN 2 2
Ry(VN,im) = NEJON <)\,~+pYiT—Y;T+1> + No
2
R¥(r) = NEY {()\ — B}, A]) } + No2.

Here we used the fact that there is cross-sectional independence and symmetry in terms of

1. The statement is equivalent to

N 2
NE;{:N |:<)\z + pYir — Y;T—H) }
lim sup sup

N—soo mwell N]EZ;A’ [()\z — E;‘iﬂ i [/\z])ﬂ + Neo

<1. (A.2)

Here we made the dependence on 7 of the risks and the posterior moments explicit. In the

calculations below, we often drop the 7 argument to simplify the notation.

In the main text we asserted that

PNy yio) = B 3 1077 (A o). (A.3)
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This assertion can be verified as follows. Taking expectations with respect to (;\j, yjo) for

j # 1 yields

ngy 7r[ )\layzo
AN . ;
-2/ % o(* BNJ>B—N¢ (25 0

1 Yio — Yj A N
B // ( By )B_N¢( OBN ]O>p<>‘j>yj0)d/\jd?/j0-

The second equality follows from the symmetry with respect to 7 and the fact that we

integrate out (S\j, Yjo). We now substitute in

~

p(Aj, yj0) = /p(j\juj)ﬂ(%,ij)d)\j’

< 1 X — )\
p(Ajw):U/Tczs( ;/Tﬂ),

and change the order of integration. This leads to:

where

Eg};y [ ()‘u ?/20)]
1 (=M . .
- /]l B—N¢< BNJ)z»(Ajw)dAJ

1 4 Ai — Aj qu Yio — Yjo O yio)dhdy;
m \/W By By T\Aj5 Yj0)AA;AYj0

1 Yio — Yj

L Ai— A 1 Yio — Yj
- /\/mgb (M) [/ By’ (OB—N]O> W(?/m!/\j)dyjo] T(Aj)dA;.

Now re-label A\; and A; and y;o as ;0 to obtain:

p*(j\z‘, yi())

1 Ai — i / 1 (yio—ﬂz‘o) . N }
/ 02/T+B]2\,¢<\/02/T+B]2V) { By By ) TWeRde| T
Risk Decomposition. We begin by decomposing the forecast error. Let

26111])()\, ?JO)

M(A7w27p()‘7y0)) :)‘+w O\

(A.4)
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Using the previously developed notation, we expand the prediction error due to parameter

estimation as follows:

~

Yiry1 — A — pYir
S (A A2 2 (i) () (5 on 3
= [M(/\i(P)aU /T + By.p (Ai(p)7}/i0))] — mu(Ai, Yio; ™, By)
+m*(5\i,yi0;ﬂa By) =\
+(p — p)Yir
= Ay + Ay + Ag, say.

Now write
. 2
NEgi |:()\7, + pYir — Y§T+l> } B NE??}: [(Avs + Agi + Az)?].

We deduce from the C, inequality that the statement of the theorem follows if we can show
that

(i)  NEY.[A%] = oun(N%),

NE, ™ [A3;]
(ii) lim sup sup Vi, J,\ <L
N—oo mell N]EGJ; ‘ [()\z —Ey [)\ZDQ} + Neo

0,m, )
(i)  NEY,[A%] = 0un(N7T).

The required bounds are provided in Lemmas A.3 (term Ay;), A4 (term Ay;), A5 (term
A3i)- |

A.1.3 Three Important Lemmas

Truncations. The remainder of the proof involves a number of truncations that we will
apply when analyzing the risk terms. We take the sequence Cy as given from Assumption 3.3.
Recall that

2 1
— InN<Cy < —.
M, =YV S By

We introduce a new sequence diverging sequence Ly with the properties
limNinf LyBy >1 and Ly=o(N"). (A.5)

Even though we do not indicate this explicitly through our notation, we also restrict the

domain of (\,yo) arguments that appear in numerous expressions throughout the proof
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to the support of the distribution of the random variables (\;,Y;), which is defined as
Suppy v, = {(A, y0) € R?*[m(A, yo) > 0}.

1. Define the truncated region 7, = {|A\| < Cy}. From Assumption 3.2 we obtain for
CN Z M3 that

N'"™P(TY) < Mexp((1—€)InN — My(Cy — M;)) (A.6)
= ]/\\/[/1 exp (—M2 {CN — 1]\; ‘ lnN})

= o))

for all 0 < € because, according to Assumption 3.3, Cy > 2(In N)/M,. Thus, we can

deduce

NP(TY) = 0ux(NT).
2. Define the truncated region Ty, = {max;<;<n |Yio| < Ly}. Then,

NR(TE) = NP{max [Vl 2 L) (A7)

N
< N P{|Yiol > Ly}

i=1

= N*° / 7(yo)dyo
lyo|>L N

—~ 2—c¢
< Miexp| —Ms |Ly — In N
S 1 €Xp ( 2 [ N M, })
- 0(1)7

for all € > 0 because according to (A.5) Ly > (2/Ms)In N. Thus, we deduce that

NP(T%) = 0, -(N*).

3. Define the truncated region T, = {|p — p| < 1/L%}. By Chebyshev’s inequality,
Assumption 3.6, and (A.5), we can bound

NP(TE) = NP{|p — p| > 1/I13} < LYE [N(p— p)?] = 0un(N*).  (AS)

4. Define the truncated region T2 = {|6% — 02| < 1/Ly}. By Chebyshev’s inequality,
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Assumption 3.6, and (A.5), we can bound

NP(T5) = NP{|6® — 0?| > 1/Ly} < LYE[N(6* — 0%)?] = 0y-(NT). (A.9)

(e

5. Let U; _1(p) = %Zthz Uit_1(p) and Uy (p) = Ugy+pUst_1+- - ~+p' " U;;. Define the trun-
cated region T = {maxi<;<n |Ui—1(p)| < Ln}. Notice that U; _1(p) ~ iidN(0,02)
with 0 < 02 < oo. Thus, we have

NP(T7) = NP{ nax, Ui-1(p)] > Ln} (A.10)

< NZ]P’{\Uz ~1(p)| = Ly} = N*P{|U; ~1(p)| > L}

L3 L2
< 2NZ%exp <——1\27> = 2exp <—2—]\2[ +21nN)
0',

20 o
In N
< 2exp <—2 (Waé — 1) lnN)
- OU.W(N+)7

where the last inequality holds by (A.5).

6. Let Vi 1 = Ci(p)Yio + Colp)N\i + U;_1(p), where Cy(p) = %Zthl piL Cop) =

IS ,(L+ -+ p2). Because T is finite and |p| is bounded, there exists a fi-
nite constant, say M such that |Ci(p)| < M and |Cy(p)| < M. Then, in the region
TN Ty, N T
gggVIY -1l < Cp)] max (Al +[Ca(p)] max [Yio| + max |Ui-1(p)|
< M(Cy+ Ly + Ly),
which leads to
max |Y; 1 —Y; 4| <2 max |Yz 1| <2M (Cx +2Ly) = 0y (NT). (A.11)

1<i,j<N

7. For the region 7, N 7Ty, NT;N Ty and with some finite constant M, we obtain the bound

A i} i M (Cy + Ly)
x5 =) Vi) € T 0 (V). (A1)
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8. Define the regions 7,, = {|m(\;, Yio)| < Cn} and Tr = {|m.(\;, Yio)| < Cn}. By
Chebyshev’s inequality and Assumption 3.5, we deduce

1

NP(T;) < C—QNE( m(Ni, Yio)?T,8) < 0urn(N1) (A.13)
NIP(T'V;:L*> S CLQNE(m* (5\17 }/;0)27;2*) S O’LL.ﬂ'(NJ’_)'
N

We will subsequently use indicator function notation, abbreviating, say, I{\ € T,} by
I(7x) and I(T3)I(Ty,) by L(TxTy,)-
A.1.3.1 Term Ay;

Lemma A.3 Suppose the assumptions in Theorem 3.7 hold. Then,
YN Sy A2 YA Cn ~ 2 .
NE@JT [:U()\( ) /T+BN7p (Az(p)vy;O))] _m*(>\i7yi0;7ra BN) :Ou.W(N O)-

Proof of Lemma A.3. We begin with the following bound: since (a + b)? < 2a? + 20,

= (o027 4 B0 50)] ™ i B |

20% + 2mi(5\iayi0;ﬂ-7 By)
2C%, + 2m2(Ni, yio; 7, By ) (Tows) + 2m2 (A, yio; 7, B)I(T,)
T

IA

< 4C% +2m2 (N, yio; ™, BN)I(TE,). (A.14)
Then,
NEY [A3) < NEJ[A3L(To: T To Toy Tone To) (A.15)
+NEY [A3 (I(T5) + 1(TE) + I(TE) + I(TE) + I(Te,) + L(TY))]
< NE%’Z [A21(To2 Tp Tor Ty T T2

HACE N (P(TS) + P(TF) + P(TE) + P(T55) + P(T5,) + P(TX))
+H12NEY [m2 (A, yios 7, By)I(T;5.)]
= NEY[A31(To> Ty To Tvo Trne T + 0un(N) + 040 (NF).

The first 0,..(NT) follows from the properties of the truncation regions discussed above

and the second 0, (NT) follows from Assumption 3.5. In the remainder of the proof we will
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construct the desired bound, 0, .(N®), for the first term on the right-hand side of (A.15).

We proceed in two steps.

Step 1. We introduce two additional truncation regions, 73\5,0 and 7., which are defined

as follows:

Ty = 1Y) = Cl <A < Cly, —Ciy < Vi < Cy}

N N N€
oty = {()\iaY;O) p(\i, Yio) > W}’

where it is assumed that 0 < € < €.

Notice that since Cy = o(N*) and VIn N = o(N™1),

Ol = o(N*). (A.16)

In the first truncation region both 5\1 and Y;o are bounded by C',. In the second truncation

region the density p(\;, Yio) is not too low. We will show that

NEY A Tay, T5))] < 0un(N©) (A.17)
NEYT[ALLTTS )] < 0un(NY), (A.18)

Step 1.1. First, we consider the case where (;\“ Yio) are bounded and the density p(j\i, Yio)
is “low” in (A.17). Using the bound for |Ay;| in (A.14) we obtain:

NEY, [ALI(T;y)U(Ty,)]
< ANCZP( Tory C))+2NIE ~ [m2(\iyios ™, By)I(TE,)]

N¢ a A
= 4NCN/ / { )‘zayzﬂ) N }P()\i,yio)d()\uyio) + 0ur(NT)
Ai=—C yzO—*

ANC% / / ( )dyzodA + Our(NT)
1*_0 Yio=— Cl

= 403 (205’ N+ 0,-(NT)
< 0un(N9).

IN

The 0,.,(N7T) term in the first equality follows from Assumption 3.5. The last equality holds
because Cy,Cl = 04.(NT) (Assumption 3.3 and (A.16)) and 0 < e < €g. This establishes
(A.17).
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Step 1.2. Next, we consider the case where (\;,4:0) exceed the C'y bound and the density
p(j\l-, Yio) is “high.” We will immediately replace the contribution of 2N mi(S\,, Yio; ™, BN)L(TE,)
to the expected value of A%, by 0,.(NT).

NEY, |AALTTS,))
< ANCRP(TANTS,) + 0un(NT)

2 1 A= A oy . \. o o +
= 4‘]VC(N /7";}/0 [/)\1 O'/ﬁ(b (U/ﬁ) 7T()\myzo)d>\z] d()\za Z/zo) + u7T<N )
4‘]\/vC(N /)\l /5\i|>C’ [/yzo U/\/T¢ (U/\/T) W(yzOlAz)dym] ()\z)d(Am )\z)
2 5\1 _ Ai A . 7'{' . . . . 0
+4NC / Ah()bc [/ 0_/\/—¢ (U/\/T) d/\z] (Azayz())d()\myw) + u.7r(N+)

) 1 Ai — Ai '
= 4NC? /MSCN [/ﬂib% a/\/T¢ (U/\/_> dA] m(Ai)dA;

+4NC]2V/ {/ W()\i’yio)d)\i] 7(Yio)dyio
lyio|>Cy Ai
+0ur(NT)

1 VS VI N
ANC? = ] roun
' /MSCN [/&-b% U/x/Td) <a/\/T> ] ()

+4ANC}, / 7(Yio)dyio

lyio|>Cy
+0ux(NT)

= Bi+0ux(NT)+0u,-(NT), say.

IN

IA

The second equality is obtained by integrating out 5\1-, recognizing that the integrand is a
properly scaled probability density function that integrates to one. The last line follows from
the calculations in (A.6), Lemma A.2, and C) > Cy.
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We will first analyze term B;. Note by the change of variable that

1 )V VI N
) 7 d)\z
/Xi|>05v 0/\/T¢ (0/\/T>

VT(ChN o o o
_ / 6()di; + / H(h)dA,
—00 \/T(C';\,—Ai)/d
VT - oo o
< / S A, + / o),
o0 VE(Cly— i) o
< 2/ d(Ni)dA;
VT (Chy—=IXil) fo

- OVT(Cy = AD)/o)
S VI -

where we used the inequality [7° ¢(\)d\ < ¢(z)/x. Using the definition of C’) in Assump-
tion 3.3 we obtain the bound (for vV2In N > 1):

2 s(VT(Cx = Ni)/o)
BoS NG PTG T O

|)\¢‘<CN
< 4NC’]2VeXp(—lnN)/ (A)dN;
|/\¢‘<CN
< 4C%
= oux(NT).

This leads to the desired bound in (A.18).

Step 2. It remains to be shown that

NE) [(ALUToe T To T Tooe T Tay, To))] < 0un(NF). (A.19)
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We introduce the following notation:

Dxi

p(Aip), Yao)
p(Xi(p). Vi )

1

Moreover, we introduce another truncation

Ts) = {(j\myio) ]5(_

On the set 7,,., we have |m*(;\i, Yio; ™, By)| < Cly, and so

|A1;] < 2Cy.

A-11

(A.20)

(A.21)

(A.22)

For the required result of Step 2 in (A.19), we show the following two inequalities; see Steps

2.1 and 2.2 below:

NE?;,: [Ai']l(ﬁﬂ 7:7
NEYY [A3L(Te2 T

5 Tor Tvy Tonse T
To Tvo Tm

Tsvy Tot)
« T\ Tayy To) T

) 7;( ] < OUW(N+)
] < 0yr(NT).
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Step 2.1. Using the triangle inequality, we obtain

Cn N
i| _m*(/\iayiO;W7BN)

< |u(N(p), Yio, 6%/T + B3, 97 (Ni(p), Yio)) — mu(Ni, yio; 7, Bw)

A 62 o2\ dp, (62 " dpy
= [N) = N\ ) ®H (T B2 I ]
D-ro+ (5 -F) 2 (2 N)<§§_,) =31

) _ 62 o2||dp. 52 dpt dp.

= Ay + A + Az, say.

Recall that Y; ; = %Zthl Y;;—1. Using the Cauchy-Schwarz inequality, it suffices to show
that

NEY" [ALU(Toe To To Toa T Ta Tay, To) To0)] < 0un(NF), i =1,2,3,

For term A;;;. First, using a slightly more general argument than the one used in the

proof of Lemma A.5 below, we can show that
NEgN [A%u] = Egﬂv [N(ﬁ - P)zYi?—J = Ou.ﬂ(N+)'
For term A;,;. Second, in the region 7—5\YO N T« we can bound the Tweedie correction term

o? dpy;
o B2 *7
<T i N) ‘ Dsi

Using Assumption 3.3, Assumption 3.6, and (A.16), we obtain the bound

under p,; by

= ’m*(j\,-,yio;ﬂ, By) — Xi(p)| < Cy + Cly. (A.25)

1 yN

N]Eg{: [A%2ZH<7}\YO)H(TW*):| < mﬂze [N(&Q _ 0’2)2] (C;V + CN)2 — Ou.ﬂ-<N+).

For term Ais;. Finally, note that

. 2
o2 11N\ (dpt™  dp.

A (Te) < (= + By =— ) | 2 =)
. (T"2>‘(if+ N+TLN) (ﬁ,(‘” P
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Thus, the desired result follows if we show

f){,il) P

]

v (™ apa\
NE%{W U ]I(’];3 To Tvy Tonx Ta 7}\1,0 7;(.)) = ouﬂ(NJr) (A.26)

Decompose

S0 p. oD

Y2 D;  — Dxi + P P \ P

d]agii) dpsi . d]a{iii) — dps _ dpyi ( ]B{iii) — DPxi >

Using the (). inequality, we obtain

o (a7 ap\
NE}, (p’. —L) (T3 75T Tone Ta Ty To o)

ﬁ;(;il) DPxi
~(~i) 2
< 2NE}" (ﬁ“)—p s ) L7576 o T Ta Ty o) To)

yN dp*z 2 ﬁz(_z) — DPxi ’
+2NE ‘ prry ICT5Te Ty Tons TN Ty, Tot) ()

(=)

— oYY <V N(dﬁﬁ_i) — dp.i)
- 0,m

2
) (7575 Ty T T Ty, To) Ti)

\/N(féii) _ p*i)
2354_1) — Dui + Dui

— 2317, + 20u.7r(N+)B2i7

2
+20, -(N*)E)Y ( ) LT3 T Tvo T Ta Ty, To) Tic)

say. The 0,.,(N*) bound follows from (A.25). Using the mean-value theorem, we can express

VN —dp) = VN — dp.) + VN(p — p)Rui(p)
VNG = pa) = VNG —pa) + VNG — p)Rai(p),
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where
& (A=A (A=A g L g=a
Ru(p) = N_1;BN¢< B By (Vi1 =Yoo g0 | =50
L 1 (A=) e o 1 (Y-
+N—1;B_12V¢< Bx (Yj_l_Y;_l)B_NQb( By )7
1 L (N0 =M (M) A0 o o L (YooY
Rai(p) = m#i B_N¢< B B (Yj,—l—Yi,—l)B—N¢ <B—N>’

and p is located between p and p.

—i)

We proceed with the analysis of By;. Over the region 7y, f)f — Pai +Dsi > DPxi/2. Using

this, the C, inequality, and the law of iterated expectations, we obtain

B2i

IA

0?71—73)7;

i 1 —1i A(—1
AEY" LQ—QE“ [N (3 ’—p*i)2ﬂ(75%7§07m*ﬂ7xy07;<~>7%(-))}]

*7

i 1 —1q N ~
+HAE; [p—zEgiry) [N(p— p)zRii(p)H(TﬁTUTYOTm*’ﬂ’&yoﬁuﬁ(.))]]

*7

= 4E§i; [Ba1i + Baail,

say.

According to Lemma A.8(c) (see Section A.1.4),

—i (i M
EY NG — pa) U T T T T Ty To) To0)] < 32l (Tiy To))-

BN i B%
This leads to
E%[Bm] < _Q]E?a},n {p_gﬂ(f\yoﬁt))} = _2/ pTdAidyio-
By *i By Tay Tp(y Pi
0
According to Lemma A.8(e) (see Section A.1.4),
2
/ —QZCZ)\ZdyZo = OUAW<N+>.
Tvy o) P

Because 1/B% = o(N™) according to Assumption 3.3, we can deduce that

Egj,:r[B2lz] < O’LL.7T(N+)-
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Using the Cauchy-Schwarz Inequality, we obtain

Bui < -5 \/]Eg’;;l N2(p— p) \/Ey 3[R (DT T T Tons Th Ty, To) T00)] -

Using the inequality once more leads to

i N ~ 7 1 2
EY. (Bl < \/E [N2(5— p)] \/ Ep [p—E;V v [R3(5)T (’EaTUﬂfonfoTxYOﬁ(»E(-)ﬂ}

*7

|1 i
< ou.ﬁ(Nﬂ\/]Eey,,r L?—Eg; i [R3(P)1 (Tﬁ’fzfﬂfo’fm*’ﬂﬁyﬂ(oﬁ(-)ﬂ]-

*7

The second inequality follows from Assumption 3.6.

According to Lemma A.8(a) (see Section A.1.4),
By e LR D)L T5To T Tone Ta T, T To0)] < MEADEI( T, o)

where Ly = o(N™) was defined in (A.5). This leads to the bound

(ﬁ)4ﬂ<’&yﬂ;<.)>]

Dxi

4
(ﬁ) pid;\idyio
voTo() \Psi

4
(&) d;\z‘d.%‘o
yoﬂ7;<-) D

]Eg{;[Bw] < 0w (NT)MLE | B,

A

A

\

= 0y-(NTYML?%

_—

< 0un(NT)M,LA /
.

X

< 0un(NT).

The second inequality holds because the density p; is bounded from above and M, is a

constant. The last inequality is proved in Lemma A.8(e) (see Section A.1.4).

We deduce that By; = 0,.(NT). A similar argument can be used to establish that
By = Ou.W(N+)-

Step 2.2. Recall from (A.22) that over T,

‘Alz‘ < 2CN = OU.W(N+)'
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Then,
NEYL AL To> T To Ty Tow TaTay, To) T
< 0un(NONBY (T T3 To T T Ty, Tot T
Notice that
c ) A DPxi
) = {pz( g —Dwi + (p— p)Roi(p) < —7}
De A Dxi
< {7~ b= o= pllRa(@] < -2t}
50 _Pa Pui
{5 = pa <20l - slira] > )

Then,

NP (Toe T3 T T TaTay, o) 7o)
(—1) Pxi

= N]Pg,w,yi {ﬁg_i) —Pui < _Z}

+NBY 3 {19 = ol Ba()] > B2 T 0T T Ty Too)

(i) f (i D 16 L7 -y
< NBY S = < T R R0 U T T T T T T, o)

0,7,V % 4
( ~(—i D MLS
< NIP%},T i {p( ) —Psi < —I} + ) NPZQ (T To)-
The first inequality is based on the superset of from above. The second inequality is

based on Chebychev’s inequality and truncation 7;,. The third inequality uses a version of
the result in Lemma A.8(a) in which the remainder is raised to the power of two instead of

to the power of four. Assumption 3.4 implies that p; is bounded from above:
i = /p(5\|)\)7r(Y;0|)\)7r()\)d)\ < M/ﬂ'()\)d/\ =M < o, (A.27)

because p(A|A) is the density of a N(\,02/T) and w(Yj|\) is bounded for every 7 € II
according to Assumption 3.4. Thus, in the previous calculation we can absorb one of the p;

terms in the constant M.

In Lemma A.8(f) (see Section A.1.4) we apply Bernstein’s inequality to bound the prob-



This Version: September 3, 2018 A-17
ability Pgi ;_3; {]5,(;4) — Psi < —’%} uniformly over (5\1, Yio) in the region Tyy, , showing that

' 0 J (=i Pxi
NEY, [Py 5 {7 — p < -2 (T,

(T To0)| = 0un(N7),

as desired. Moreover, according to Lemma A.8(e) (see Section A.1.4)

i | Pi
EY . {—2 H(Txyoﬁo)} = /
p*i T

A

2
<&> dj‘zdyz(] - Ou.W(N+)7
Yorﬂ;(-) P

which gives us the required result for Step 2.2. Combining the results from Steps 2.1 and
2.2 yields (A.19).

The bound in (A.15) now follows from (A.17), (A.18), and (A.19), which completes the

proof of the lemma. W

A.1.3.2 Term A,
Lemma A.4 Suppose the assumptions in Theorem 3.7 hold. Then, for every ey > 0,

NEY™ [ (m. (i, yio: ™, Bi) — As)°
Jim sup sup 0,7 [(m( ,Yio; T, By) )}<1

Nooo mell N]E(J,f;”\i [()\, - IEQ; i P‘z])Z] + Neo

Proof of Lemma A.4. Recall that m*(S\i,ym; 7, By) can be interpreted as the posterior
]Eyi)\i

*,0,7

mean of \; under the p, (A;, y;0; 7) defined in (17). We will use -] to denote the integral

V(] = / AT (ol NV, A, o),

where

. 1 A=A
0= e ()
mlnl) = [ 5o (L5 ) nlnldio




This Version: September 3, 2018 A-18
The desired result follows if we can show that

yi7>\i A' e _ . 2 €0
NE M (A, Yio; ™, Bn) — N\ + N

*,0,7

(i) limsuplimsup : 5 <1
e e NEgi;Ai [()\z — m(As, Yio; W)) } + N<o
Vi a 2
NEQJ; ' (m* (/\17 Yio, T, BN) - )\z>
(i)  limsuplimsup <1

*,0,7m

T\ < 2
N—o0 mell NEy 7>\Z |:<m* ()\17 y207 71—7 BN) - )\z) :| + NGO

Part (i): Notice that the denominator is bounded below by N€. We will proceed by
constructing an upper bound for the numerator. Using the fact that the posterior mean

minimizes the integrated risk, we obtain
Vi S 2
NE*QJTZ (m* (/\17 Yio, T, BN) - A’L)
Vi ) 2
< NEZ (m(/\z‘; Yio; ™) — /\i>
Vi ; ?
< NE [(m(/\i: Yio; T) — /\i> I(Tsy,

R 2
~|»NEyi7>\i {(m()\,, Yi0; 7T) — )\z> (H<7}\CYO) + ]1(7;)6()7}\5/0) + H<Tncz> + H(RC))

*,0,7

= DBy + By,

say.

A bound for B;; can be obtained as follows:
~ 2 ~ ~
By = N// (m(/\m Yio; T) — /\i> L( Ty, To() T T )P (Nil M) T (i | Ai) 7 (Ni) d(Aiy Ais io)
~ 2 ~ ~
< (1 +0(1))N// (m(/\i,yio;ﬁ) - /\i> ]1(72\5/07;()7;717;\)17()‘2'I)\i)ﬂ-<yi0|)\i)77()\i)d()\i7)‘iayz‘O)

< (1+ 0(1)>NE3;,25M [(Az - m(j\myz'o;ﬂ))z] :

The first inequality is based on Assumption 3.4 and an argument similar to the one used in

the analysis of term [ in the proof of Lemma A.7. The o(1) term does not depend on 7 € II.
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To derive a bound for By; first consider the inequalities

2m® (A, yio; ™) (I(To) + L(T)) + 223 (I(T3) + 1(T5))
4C% + 2m(5\i, Yio; ™) I(TC) + 2X21(TY°).

(m(;\i; Yio; T) — /\i>2

IN

A

Thus,

By < ACYN(P(Tiy, Ty) +P(TS,) + P(T) + B(TY))
+8N]E3f7;* [m (N, yio; 7)1(T)] + SNng;M [NZI(TY)].

Notice that C% = 0,x(N*), NP(T5y, 7,0) = 0ur(N©) (see Step 1.1), NP(T,. ) = our(NT)
(see Step 1.2), and NP(T,%) = 0,-(NT) (see Truncation 1). Also, notice that

NE) M [NI(TY)] = N A2 (\)dA

IA>Cn

< / M (N)dA NQ/
[A>Cn M>CN
<M NQ/ m(A)dA
[A[>Cn

= 0y (NT).

The first inequality is the Cauchy-Schwartz inequality, the second inequality holds by As-
sumption 3.2, and the last line follows from calculations similar to the ones in (A.6). There-

fore,
B2i S Ou.w(N€O)-
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Combining the bounds for By; and Bs;, we have

Vi N 2
NE*eﬂ (m*()\i,yio;w, BN) — /\z> 4 Ne¢o
lim sup lim sup : g

N—oc0 mell N}Egj’;Al |:()\7, — m()\“ym,'/r)> :| + Neo

~ 2
(1 + 0<1))N]E3<}9)7\r [(m*()\l,ylo, T, BN) — )\z) :| -+ Ou.ﬂ_(NEO) + N¢o

< lim sup lim sup
N—o00 well

NEG ™ |:</\z —m(/\i,yio;ﬁ)) } + N

(1+o(1)) {NE{O; {(m*(&,yio;w, By) — Aiﬂ + NGO}

< lim sup lim sup

_ R 2
N=oo mell NEX:;)‘Z' [(x\z —m(/\i,yz'o;ﬂ)) } + Neo

=1,

where the term o(1) holds uniformly in 7 € II. We have the required result for Part (i).

Part (ii): The proof of Part (ii) is similar to that of Part (i). We construct an upper bound

for the numerator as follows
y. >\ o 2
NE; ™ (m*(Aia Yio; T, Bn) — )\i>
y. )\ o 2
S NEQ;;— ' [(m*()\iayio; T, BN) - )\z> ]I(7-j\y

~ 2
+NE} [(m*w,ym;m By) = A) (IT5,) + UTay, Tyi) + 1Ti) + 1(T5)
= DBy + B,

say. Now consider the term Bjy;:

A 2 PN (ol Ai)
By = N/// M (Nis Yios T, BN) — Ai ) (| X)) T (o] As) R T(A)
< ) PN )T (Yio | i)

XI[ 7;\}/7' Tm*ﬂ) (/\zy)\zayz())
2 o
= o)V [ [ [ (meGhioim, B = 2) b a A 0)
XH(TxYOEc)Tm*TA) (As, dNi, dyio)

PiA “ 2
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where the o(1) term is uniform in 7 € II. Using the a similar argument as in Part (i) we can

establish that By; = 0,.:(N), which leads to the desired result. B

A.1.3.3 Term As;
Lemma A.5 Suppose the assumptions in Theorem 3.7 hold. Then,

NEY [(5- )] = 0ur(N).

Proof of Lemma A.5. Using the Cauchy-Schwarz inequality, we can bound

BN (VNG - p)*VE] < \/Es’,i (VNG - )| B2 4.
By Assumption 3.6, we have
By [(VN(h = )] < oun(NF).

For the second term, write

T-1
Yir = p"Yio + > p"(\i + Uir—r).

7=0
Using the C, inequality and noting that T is finite and Uy ~ #dN(0,0?), we deduce that
there is a finite constant M that does not depend on 7w € II such that
N N N N
B [val < (B [va] B M)+ 2 (04])
= oux(NT).

The last line holds according to Assumption 3.2 and because U;; is normally distributed and

therefore all its moments are finite. W
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A.1.4 Further Details

We now provide more detailed derivations for some of the bounds used in Section A.1.3.
Recall that

L & (A=A (M =AY o o L (Ye-Y
Rii(p) = _H;B_Nd)( ! B ! B (Yj,1—Yi,1)B—N¢(]B—N)
Lo~ 1 (A= Ap) ) (o 1 (Y~ Y

—l—m;B—?\[qb( J B (Yj—l_ Z_l)BNQS( JBN )
1 1 (A=A (A A0 o L (Y Y
Rai(p) = N_l#i B—N¢< B B (Yj,—l—Yi,—1)B—N¢(—BN )

For expositional purposes, our analysis focuses on the slightly simpler term Ry;(p). The

extension to Ry;(p) is fairly straightforward. By definition,

~ ~ _

A(D) = Xi(p) = Aip) = Xilp) = (5= p)(YVjm1 = Vi),

Therefore,

Consider the region 7, N Ty N Ty,. First, using (A.12) we can bound

M

ma [(5— p)(¥; 1 = Yi)| < 7
N

1<i,j<N
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Thus,

M
LnBN

say. The function ¢(x) is flat for |z| < and is proportional to a Gaussian density

outside of this region.

Second, we can use the bound

Ai(p) = i N Y, 4 —Yi_ Ai(p) — A M
i(p) (p)_(p_p) i = Yia )| iP) = Ailp)| .
BN BN BN LNBN
Third, for the region 77 N Ty, we can deduce from (A.11) that
max |§7j,71 — }72',,1‘ S MLN
1<i,5<N
Therefore,
S . 1 Yo=Y MLy  (Yjo—Y;
Y. 1-Y _|— J < J .
7 ’1|BN¢< By )_ BN¢< By )
Now, define the function
.0 =60 (1ol + 1)

Because for random variables with bounded densities and Gaussian tails all moments exist
and because LyBy > 1 by definition of Ly in (A.5), the function ¢,(x) has the property

that for any finite positive integer m there is a finite constant M such that

/(b*(x)mda: < M.
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Combining the previous results we obtain the following bound for Ry;(p):

N ~ ~
1. p) = Ai(p) Yio
| Roi (D) I(T; To Ty s Z?; B0 ( e ) — 6 (B—N . (A28)
For the subsequent analysis it is convenient define the function

Oy = A= Vi) = 6. (A e s )> o(Ter ).

In the remainder of this section we will state and prove three technical lemmas that establish
moment bounds for Ry;(p) and Re;(p). The bounds are used in Section A.1.3. We will
abbreviate Eg’:;z [-] = E;[-] and simply use E[] to denote Eg}:[]

Lemma A.6 Suppose the assumptions in Theorem 3.7 hold. Then, for any finite positive
integer m > 1, over the regions Tyy. and Ty, there exists a finite constant M that does not

depend on 7 such that

M

B]Z\}m—l)

Ei[f™(\j — i, Yio — Yao)] < Di.

Proof of Lemma A.6. We have

Ei[f™(Nj — i, Yio — Yao)]

1 1 (A=A 1 Yo — Yo\ < 3
= — [ —4. — o [ L0 p(N, yo)d(A,
B?V(m_l)/Bﬁ ( Bu ) BNcb( Bu ) (A vo)d(A, yo)
1 1o (=3 1  [fy-Yo\" )
S — 3, — ol M) d(A, A)d\;
g | ] 50 ( BN) a0 (25) Pl yo>] *(A)

_ /
B]2V(m—1) T
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The required result of the lemma follows if we show

_ Lo (A=A yo—YiO)m A .
=0 By " N M ol M) d(A, )d,
p(Ai,Yio)/ﬂ /BN¢ ( By ) BN¢( Be ) PO wlrd( yo)] (i)

=M (A.30)

—1 Lo (A=A " Yo —Yi )m ) .

p(As, Yio) /Tf / BN¢ ( By ) BN¢ ( By P(A, Yol A )d( yo)] T(\;)
=M (A.31)

over the regions T3y, and 7y, and uniformly in 7.

For (A.30), notice that the inner integral of term I is

1 - 5‘_5‘1 " 1 Yo — Yio "o "
By ¥ T A Yol A)d(A,
| 5 BN> a0 (2 5) Ol o)

say.
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Notice that

~ ~ m ~ 2
1 - [ A=\ 1 1A=\ <
— o, : exp | —= | —= d\
BN¢ ( By ) o /T Pl (0/\/T>

/
= /Qg*(k*)m ! exp ! (Xi_Ai+BN)\*>2 d\*
/

o/NT

3. (\)™ exp —(k&-—AQBNAjzﬁ%f>ema<—%<j7$;)2)dA*

AN
—
-
*
>~
N
3
@
4
o}
o~ N N T

IA
<

1 BYAEY
U/ﬁexp 3 a/\/T

A
<

1 1 N — N ’
a/ﬁexp 2 U/\/T

where vy = %(C}V + Cyn)By.
Here, for the second equality, we used the change-of-variable A\, = (;\ — 5\1) /By to replace

. 2
A. The first inequality holds because the exponential function exp <—% (%) ) is bounded

by one. Moreover, under truncations 7y, and 7y, IA;| < C and |\;| < Cy. According to
Assumption 3.3, vy = 5(Cly + Cy)By = o(1). Thus, the last inequality holds because
J57 @ (X)™ exp (un A*) dA* is finite.

We now proceed with a bound for the second integral, I. Using the fact that the Gaussian
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pdf ¢(z) is bounded and by Assumption 3.4, we can write

b= [ ¢(%)m (o)
< o [ oo (B520)

= M(1+o(1))n( mIA)

uniformly in |yo| < C} and || < Cy and in 7 € I1.

Combining the bounds for I; and I, and integrating over A, we obtain

1 .

(i, Yio) J7n [ ]
1 .

p()\za }/;0)

as required for (A.30).
Next, for (A.31), since ¢, (z), ¢(z), p(A, yo|\i) are bounded uniformly in 7 and p(\;, Yio) >

N1 over Ty, we have

M
(AMYZO)B 7;\

< MN™¢ (BL?V) (N / ) w(Ai)dAi)

< MN "0, (N")o,-(N*)
< M,

where the second-to-last line holds because according to Assumption 3.3 1/B% = 0, (N ™)
and because of the tail bound in (A.6). This yields the required result for (A.31). Bl

Lemma A.7 Suppose the assumptions required for Theorem 3.7 are satisfied. Then,

(a) sup sup Dei 1‘ = o(1),
mell (S\i,YEO)G'E\YOQ%p yZi
Pi

(b) sup sup — — 1‘ = o(1)
DPi

eIl (3, Yio) € i o)
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Proof of Lemma A.7.

Part (a). Denote

p(j\hyiop‘i) = \/012/T¢ (j};;;) 7(yio| i)

N 1 )\1—)\1 1 yio_giO) ~ ~ :|
*)\i>i>\i: /—( 7 (Gio| s ) dys s
Pals olMo) B]QV+02/T¢< BZQ\,—i—a?/T)[ By By ) TWelA)de

so that

Di = /p(j\iayiop\i)ﬁ()\i)d)\u Dwi = /p*(j‘iayiﬂp‘i)”()‘i)d)‘i‘

Notice that

]ﬁ _ 1‘ _ p*z Di
Di
< )\nyzo’)\ (5\1'7%0\)\1') T(As)dA;
= 17 p*(Auylol)\) P(Niy yiol\i)| (N,
1 . R
—i—; p*(/\i,yz‘of)\z‘) —P(Az’,yiop\i) W(/\z‘)d/\i
= [+ 11, say.

For term I, since |\;| < Cy in the region 7, and |\;| < C% in the region Ty,> We can

choose a constant M that does not depend on 7 such that for N sufficiently large

1 A — A ! X — i
VB +02/T¢ (JB%‘V +02/T> N \/02/T¢ (\/02/T>
% \/O'Q/T ox 1 /\z_)\z B]QV
VBT | 2\VB +o2T) /T

. (
N \/0'2/T o2 /T
1

B Vo2 /T (\/02/T

where the inequality holds by Assumption 3.3 which implies that (C\ + Cn)By = o(1), and
the o(1) term in the last line is uniform in (};, Yj) € Tiy, N Tpy and in 7 € 1.

1+0

)exp (Cy + On)*B3)
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According to Assumption 3.4,

/BLNQS <yZOB;NgZO) T(Yio| Ni)dyio = (1 + o(1)) 7 (yio| i)

uniformly in |y;0| < C and |\;| < Cy and in 7 € II.

Then,

1 “ R
I = — p*()\iyyiop\i)_p(/\iayz‘0|)\i)

pi JT,

_1/
Pi JT3

1 s Ai — A / 1 (b(yio—ﬂio) (G0l A di
VB3 +02/T \\/B% +02/T By By OIRTE
1 A — N
NI (m) m(yiolA) | w(As)dAs

< J(1+0(1))* - 1|}% . \/‘;ng (%) T (Yiol \i) (i) dA;

< (14 0(1))* = 1] = o(1).

Note that the o(1) term does not depend on (X, Yio) € Tiy, N Ty nor on 7 € I1.

For term I7, calculations similar to the one in (A.27) imply that the densities p, (s, yio| i)
and p(j\i, Yio|\;) are bounded, say, by M. Thus, we have

1 . R
Il =— Pi( i, Yiol Ai) = p(As, giol Aa) | m(As)dA;

Di JTe
2M
Pi JTe

< 2MsupN1_E/ T(N\)dN;

mell 7;\
= o(1),

where the second inequality holds since p; > NW under the truncation 7,.) and the last line
holds according to (A.6).

Combining the upper bounds of I and /7 yields the required result for Part (a).
Part (b). According to Part (a),

pwi = pi(1+0(1))
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uniformly in (5\1, Yio) € Tsy, N Tp() and in € II. Then, for some finite constant M that does
not depend on (;\l, Yi) and T,

T S O e 3
e BaXi0) €Ty Ty P i Yio)€Tyy Ty P P
= sup sup |Pi — pail Di
mell (j‘iaY;O)G'T;\YOQ'E,(J Di pi(14o(1))
< M sup sup [pi = puil
mell (5\1',3/1'0)67&3,007;(_) Di

= o(1),

as required for Part (b). W

Lemma A.8 Under the assumptions required for Theorem 3.7, we obtain the following

bounds:

(a) Ei[ Ry, (DT T5 Ty Ty, To) o)) < MLADI(Tiy, To())

(0) E[RENT; 76T Tay, To0T0)] < MEEPITo Toc):
(c) E; [N (py " —p*i)ZH(%Tv’E@T;YOEc)%(»)] < 52 il(Tiy, Ty

(d) E; [N (dp!™" — dp*¢)2ﬂ(7?a7?7’ﬁvo’fxyo7;<->7%<->)] < zpil(Tyy,

0

To(y), where M is a finite

constant that does not depend on 7 € II.

(¢) For any finitem > 1, [
AY(

o To() <&>m dj\idyio = Ousx(N).

P Dxi

(f) NE[BAD — pui < —pei/ A} Toy, To))] = 0un(N7F).

Proof of Lemma A.8. Part (a). Recall the following definitions

_ M M M
o(x) = gb(:c—i—LNBN>H{x§—m}+¢(O)H{’x|S LNBN}
M M
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First, recall that according to (A.28) and (A.29), in the region 7, N Tz N Ty,

N
ML . .
[Ra(P)] < 57— D2 F (N = A Yio = Yao).

J#
Then,
[ MLy & !
Ra@' < |7 D F = A Yio = Yio)
L i
[ MLy & . .
= o7 2o 1 = A Yo = Yio) = Eilf (A = A Yio = Yio))

- J#i

+E[f (N — Ni, Yo — Yio)]H

N 4

S~ (£0y = 34, Yio = Vi) — Bl f (4 — A, Yoo — Yao)))
i

1
N -1

IN

ML3 [

R R 4
+M LYy [E,;[f(kj — i, Yjo — Y%o)]]
= MLA(A+ A),

say. The first equality holds since f (5\] — N, Yjo — Yio) are iid conditional on (5\“ Yio). The
second inequality holds because |z + y|* < 8(|z|* + |y]?).

The term (N — 1)*A; takes the form

(Xa) = (Za +222a3a,)

1>)

_ (Za?) +4<Z )(Zga]az>+4<zgaﬂz)
= > a +6ZZa

1>

+4(X ) (ZZ) FAL Y e

>] >3 1#5 k>l

where

>/>

= f( = X, Yoo — Yio) = Ei[f(N; — N, Yo — Yao)l,  j # 1.

Notice that conditional on (5\1(,0), Yio), the random variables a; have mean zero and are 7id
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across j # i. This implies that

4
5 [(Sa)] = Sl 6 Ym o]
Jjoi>j
The remaining terms drop out because they involve at least one term a; that is raised to the

power of one and therefore has mean zero.

Using the C, inequality, Jensen’s inequality, the conditional independence of aJQ- and a?

and Lemma A.6, we can bound

Thus, in the region T, N Ty N Ty, N Tsy, N Tpey O T

Mp; Mp?

< Mp?
_N?’BJGV pz?

N2BY ~

The second inequality holds because over Ty, p; > % > NLB]%] and for N large, N3B%, and

N?Bj; are larger than one under Assumption 3.3. Here M is uniform in 7 € II.

Using a similar argument, we can also deduce that
Ei[As] < Mp;,

which proves Part (a) of the lemma.
Part (b). Similar to proof of Part (a).

Part (c). Can be established using existing results for the variance of a kernel density

estimator.
Part (d). Similar to proof of Part (c).

Part (e). We have the desired result because by Lemma A.7 we can choose a constant ¢

that does not depend on 7 such that
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over the region 75y, N Tpy. Thus,

(ﬁ) - <1+p—i_p*i> < (1+e)™

We deduce that

/,

AYp

Yo o) 75

Pri 3vo o)

as required.

Part (f). Define

and write

| }

= iy 2 (B Vi) Bl Vil
N J#i

Notice that conditional on (5\1, Yio), ¥i(A;, Yj0) ~ iid across j # i with ]wi(S\j, Yjo)| < M
for some finite constant M. Then, by Bernstein’s inequality ! (e.g., Lemma 19.32 in van
der Vaart (1998)),

i Dxi
NP {50 = pus < =2 (T3, To)

1 N N ? *

40N 1\n2
< Nexp| -1 Bu(N — Dpai/16 LT3 To))-
4E [¢Z(/\J7 YJO) ] + MBsz*/4

I5For a bounded function f and a sequence of #id random variables Xj,

p{

Lf(X)])

1 x’
i } e <_4]E[f(Xi)2] + s, |f (x)'> |




This Version: September 3, 2018 A-34

Using an argument similar to the proof of Lemma A.6 one can show that

Ei[ti(Nj, Yj0)?/By] < Mpi/Bj;.

2
Pii
Toy) < 2exp (—MNB?Vpi Py +1In N) (753, To())-

From Lemma A.7 we can find a constant ¢ such that p; < (1 + ¢)ps; and p.; < (14 ¢)p;.
This leads to

Pi o Di
pit+pa  (2+0)(1+4¢)?

Then, on the region 7.
NE [P, {557 = pui < 22V 10T, To)
? 1 *1 4 AYo p()
2
2R ~MNBL L5 1N ) LTy T
eXp( Nt pe ) (Tax Toc2)
2E[exp (~MNByp; +In N) I(Tsy, Top))]
2exp (—M B3N +InN)

o(1),

IN

IA A

where the last line holds by Assumption 3.3 and the o(1) bound in the last line is uniform
in 7 € II. Then, we have the required result for Part (f). l

A.2 Proofs for Section 3.3

Proof of Theorem 3.8.

Part (i): we verify that our assumptions hold uniformly for the multivariate normal distri-

butions 7 € II.

Assumption 3.2. Because )\ is normally distributed, the uncentered fourth moment is finite

for each m(\) € Il and can be bounded uniformly. Note that

PN 2 €) < (1Al 2 € - ) < 2exp (-1 (A.32)

2
20y
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for C' > |ux| + 1. By plugging the bounds from (22) into (A.32) one can obtain constants

My, Ms, and Mj3 such that Assumption 3.2(i) is satisfied. The second part can be verified

by noting that Yy ~ N (g, 03), where p, = ag + aypy and o) = o2, + ajo?.

Assumption 3.4 The boundedness of the conditional density follows from 0 < 50% < 05‘ N
Yy

in (22). To verify Part (i) define 1, (A) = ap+a1 A and notice that §|A ~ N (p1,(A), 07, +B3)-

Thus, we can write

sup sup — 1| =sup sup Rin-Ron —1f,
mell |y|<Cy,IM<Cn m(y[\) mell |y|<C),[A<Cn

where

Rin=

1 1
—=(y — py(N))* — > 1.
2 Y 05‘/\ + B%, Ojlk

R1.n can be bounded from below by replacing 022”/\ with 502“. Because By — 0as N — o0,
Y
Ri1n — 1 uniformly. For the term R,y notice that

@—M¢»f(i - ):=<y—%—amf2 B

2 2 2 2
O-yp\ Uy|)\ + BN O-y\)\(o-ypx + BN)

B
< B((Ch+ M2+ MECE) s

- (0,3,)°

as N — oo because ByCx = o(1) and ByCly = o(1) according to Assumption 3.3. Thus,

Ro,ny — 1 uniformly which delivers the desired result.

Assumption 3.5. The first step is to derive the conditional prior distribution 7(A|y) which
is of the form Ay ~ N (), 05‘)\). The prior mean function is of the form py, = 70 + 11y.
If the prior for A is a point mass, i.e., 02 = 0, then the distribution of (A|y) is also a point
mass with gy, = py and a§|y = 0. It can be verified that the coefficients 7y, 71, and the

variance 0§| ,, are bounded from above in absolute value.

The prior is combined with the Gaussian likelihood function 5\|)\ ~ N ()\, o?/T ), which

leads to a posterior mean function that is linear in A and Y

1
“ 1 1 1 1 - A
m(\, y;m) = <— + ) <UT(% + MYo) + m)\> =0 + T1Y0 + oA (A.33)

2 2/T
Ty 9 / YA
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The 4 coefficients are also bounded in absolute value for = € II.
The sampling distribution of (5\, Yo) is jointly normal with mean and covariance matrix

Hiy =

o + Qi n(oy, +ajey) oy, +aio

i ] E::[ oA +0}T  (of+aded) | A

It can be verified that the covariance matrix is always positive definite. The variances of A
and yp are strictly greater than some 6 > 0 and the two random variables are never perfectly
correlated because A = A + (Y21, u;)/T. Moreover, the covariance matrix can be bounded
from above. By combining (A.33) and (A.34) we can deduce that the posterior mean has a
Gaussian sampling distribution and we can use standard moment and tail bounds to establish

the validity of the assumption. Calculations under the p,(-) distributions are very similar.
Part (ii): we verify that our assumptions hold uniformly for the finite mixtures of multi-

variate normal distributions m,,;, € Hfﬁi

Assumption 3.2. Consider the marginal density of A given by 7, (\) = Z?:l wrTk(A).

Thus, for any non-negative integrable function h(-) we can use the crude bound

[ maNr < 3 [ rmi
k=1

In turn, uniform tail probability and moment bounds for the mixture components translate

into uniform bounds for 7, (+).

Assumption 3.4 The key insight is that we can express

Z wTk(A y K WETT (A, y) K

kT KTk ( k

Tmia (Y| A) = S22 Z NI Z (y[A).
Zk; | WeTE (A =1 Zk 1wk7rk()‘) Te(A)

This allows us to directly translate bounds for the mixture components 74 (y|A) € II,\ into

results for m,,,(y|A). Using a similar argument, we can also deduce that

sup sup
Wmi;ceﬂgfi; ly|<CyIAI<Cn szx(yp\)
« S 30 (52) [m(@N) = mayIN)] g

< sup sup
;menk ly|<Cy I\ <Cn T (Y| A)

= o(1).
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Assumption 3.5. The prior distribution of A given y is a mixture of normals with weights

that are a function of y:

K

Foin(Aly) = Z( iy )”“’y)zzgk<ym<w>. (A.35)

k=1 PO Wk”k(y) () =1

Because 5\|/\ ~ N(A,0%/T), the posterior mean function is given by

miz) (A.36)

XK: ( w(y) [ TA\y)on (A A, 02/T)dA ) [ Mr(Aly)on (A A, 02/ T)dA
S we) [Ny dn (s A, 02/T)dA | [ mu(Ay)on (A A, 02 /T)dA

k=1

a}k<5‘7 y)m(j‘a Y; 7Tk)'

[
]~

>
Il
—_

Thus, the posterior mean is a weighted average of the posterior means derived from the K
mixture components. The @(5\, y) can be interpreted as posterior probabilities of the mixture

components. We can bound the posterior mean as follows:

K K
(A s Tmia) | <Y ImN g m)| =D [Fok+Tray + Feurd| < Mo+ M,ly|+ M;|A|, (A.37)
k=1 k=1

where the 7 coefficients were defined in (A.33) and are bounded for m; € II. Thus, that
the overall bound for ’m(;\,y;ﬁmm” is piecewise linear in y and X. The joint sampling

distribution of (5\, y) is given by the following mixture of normals:

K K
PO Y3 Tinia) = / PAIN D wime(X y)dA = wip(A, yi ). (A.38)
k=1 k=1

Based on (A.37) and (A.38) one can establish the uniform tailbounds in the assumption.
Calculations under the p,(-) distributions are very similar. l

A.3 Derivations for Section 4

A.3.1 Consistency of QMLE in Experiments 2 and 3

We show for the basic dynamic panel data model that even if the Gaussian correlated ran-

dom effects distribution is misspecified, the pseudo-true value of the QMLE estimator of
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corresponds to the “true” 6,. We do so, by calculating
(0, &) = argmax, ¢ By [Inp(Y, X2|H,0,¢)], (A.39)

and verifying that 6, = 6. Because the observations are conditionally independent across ¢

and the likelihood function is symmetric with respect to i, we can drop the ¢ subscripts.

We make some adjustment to the notation. The covariance matrix ¥ only depends on
7, but not on (p,a). Moreover, we will split £ into the parameters that characterize the
conditional mean of A\, denoted by ®, and w, which are the non-redundant elements of the

prior covariance matrix 2. Finally, we define

Y()=Y —-Xp—Za

with the understanding that 6, = (p,a) and excludes v. Moreover, let ¢ = vec(®’) and

W =1®Hh, such that we can write ®h = h'¢. Using this notation, we can write

lnp(yax2|h7917/y7¢7w) (A40)

= O SISO - 5 (3(6) — wA0)'S0) (3(6) — wA(6)

1 1 _
—3 In }Q‘ + 5 In |Q(”y,w)‘

—% (M@)’w’El(v)wX(m + ¢'hQ 6 — X (0,6 (v, w)A(O, 5)) ,

where

AO) = (WS (Y)w) 'S ()E(6:)
QO rw) = Q7+ WS (Yw, A0, = Q(y,w) (LG + W' ()wA(D)).

In the basic dynamic panel data model \ is scalar, w = ¢, 3(y) = Y[, 25 = 0, z = 0,
h = [1,y0]", Q = w? Thus, splitting the (T — 1)(In~?)/2, we can write

= 573 00) = 13(0)) (i) = A1)

1 1 1 1 ~
—éln ’wQ‘ - §ln }72/T| + §1H(1/T) + 5111 ‘Q(%W)‘

7. . _
! (¥A2(p) + égb’hh’gb - N0, 5)) :

Inp(ylh, p,7,0,w) = C— In |[v*| —

2 Q(y,w)
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where
M) = 730
P = 7Up
_ 1 1 - - 1 T -
00) = i+ N8O =90 (i + 0)
Note that
1 2, L TRl 1 é% 2, .2
—§ln‘w |—|—§ln’T/7 |+§ln’Q(%w)’:§1n T = ——In|w?+~*/T|
w?2 ,YQ

In turn, we can write

Inp(ylh, p,, ¢, w)
_ i T—1 1 20 L»« / ! ~ i 11 2 2
= C n |y 272y(p) (I =/ T)jlp) — 5 In[w? + 97/

1/ T 1 5 WAT (1., T \?
2 )2 —dhhd— —L 1 |} )\
2<72 (p) + —5F'hH'¢ 12T\ ¢+ (p)) )
1

= i) (= i)~

1 15500 o3 71 12
_W(MW 2A<p>h¢+x<p>).

- -

Taking expectations (we omit the subscripts from the expectation operator), we can write

E[lnp(Y|H, 0,7, qb,w)] (A.41)

: > Fhnf?] - Q%QE[Y”(/?)’(I —u'JT)Y (p)] = %m |w? + 9%/

1 R, e
s (@~ (BT B B o - (ELEE) ELFA))

EA(p) ) (BLEA) E[HA()] + E[P(p)]) |

- -

We deduce that
¢.(p) = (E[HH") "E[HA(p)]. (A.42)

To evaluate ¢,(po), note that A(py) = A+ /u/T. Using that fact that the initial observation
Yo is uncorrelated with the shocks Uy, ¢ > 1, we deduce that E[H(py)] = E[H\]. Thus,

~ ~ 1 ~

bu(p) = (ELAA) 'E[AN, (A.43)
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The pseudo-true value is obtained through a population regression of A on H.

Plugging the pseudo-true value for ¢ into (A.41) yields the concentrated objective func-

tion

E[Inp(Y|H, p, 7, 6.(0). )] (A44)
— O = BV () (T~ TV (0)

1 . o1

—g et +9%/7] - (BIN?(p)] — BIAo) ) (E{ )

W+ 22T

Using well-known results for the maximum likelihood estimator of a variance parameter in

a Gaussian regression model, we can immediately deduce that

() = ——E[Y(p)I—u//T)Y(p)] (A.45)
Gp) +2(p)/T = (E[\(p)] — E[N(p)H')(E[HH") 'E[HA(p)).

At p = py we obtain Y (pg) = tA+u. Thus, E[A2(po)] = 1&/T+E[X2] and E[H A(po)] = E[H)].
In turn,

V(po) =5, w2(po) = E[N’] — EPNH')(E[HH') " E[H]. (A.46)

Given p = py the pseudo-true value for 7% is the “true” ~¢ and the pseudo-true variance
of the correlated random-effects distribution is given by the expected value of the squared

residual from a projection of A onto H.

Using (A.45), we can now concentrate out 72 and w? from the objective function (A.44):

E[Inp(Y[H, p,7(p), #+(p), ws(p)] (A.47)

= 0~ T ()T TIV ()]

—% In !E[Y/’(p)u’f/(p)] — E[Y'(p)uH'] (E[HH)

To find the maximum of E[In p(Y|H, p,7.(p), +(p), ws(p)] with respect to p we will calculate
the first-order condition. Differentiating (A.47) with respect to p yields

F.O.C.(p) = (T—1)
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We will now verify that F.O.C.(py) = 0. Because both denominators are strictly positive,

we can rewrite the condition as

F.0.C.(po) = (T —-1E[X'(I—u//T)Y(po)] (A.48)
Y (E[Yf'(po)w?(po)] B[V (po)u T (E[ﬁff’])_lE[ﬁL’?(mﬂ)
FE[P (00) (I — o /T) (p0)]

X (E[X'w?(po)] — E[X'.H] (E[ﬁzﬁ'])‘lE[ﬁu?(po)]).

Using again the fact that Y/(po) = 1A+ U, we can rewrite the terms appearing in the first-

order condition as follows:

E[X'(I —u//T)Y (po)] = E[X'(I—u//T)u] =E[X"u] — E[X"w'u]/T = —E[X"w/u]/T
E[Y’(po)u Y(p) = E[\ + )/ (t\+u)] = T*E[N] + E[/v/u] = T*E[N] + T2
E[H!'Y (po)] = E[H/(A+u)] =TE[H)
E[F o)1~/ 1)7 <po>] B[ - Ty] = (T~ 17
E[X'u'Y (po)] = E[X'w/(tA+u)] = TE[X A\ + E[X"1/u].

]
]

For the first equality we used the fact that X;; = Yj;_; is uncorrelated with U;;. We can now

re-state the first-order condition (A.48) as follows:

F.0.C.(po) (A.49)
— (T - D(ELX]) (o + T(EN) — BT (B B{)

+ (E[X’LL’U] + T(E[X"\] — E[X'.H] (E[ﬁ]ﬁ’])lE[ﬁ)\])) (T — 1)

= T(T—1)[ ([X’LA] E(X" H'|(E[HH) IE[H)\])

—E[X"u/u] (EW] — E\H] (E[Hﬁ'])lm[m]ﬂ .

We now have to analyze the terms involving X’¢. Note that we can express

t—1

Yi=pYo+ > pi(A+ Uiy).

=0
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t—1 -1 :
Define a; =) . _ pj and b =), | a;,. Thus, we can write

t—1

Y = phYo + Aar + > piUpr, t>0.

7=0
Consequently,
T-1 T-1 T-1 T—1 t—1 T-1
X'=) Y=Y, ( pg> +A (Z at) + PoUs—r = aryo +bA+ > a,Ur .
t=0 t=0 t=1 t=1 =0 t=1

Thus, we obtain

— b%?)

- T-1
EX'v/u] = E || arYy+b\+ Z aUp_y (Z Ut)

t=1 t=1

T—1
EX"A] = E||arYo+bA+ ) alr )\] = arE[Yp)] + bE[\?]
t=1
T-1

EXH] = E||arYo+bA+) alr | H
t=1

= arR[YoH'] + bE[NH'].

Using these expressions, most terms that appear in (A.49) cancel out and the condition

simplifies to
F.O.C.(po) = T(T — 1)yoar (E[YO)\] — E[Y,H'| (E[ﬂﬁ[’])‘lE[ﬁA]) : (A.50)
Now consider

E[Y, 4| (E[H H") "E[H)
E)Yg] -E[Y)
O

E[Yo]
E[Y{]

Thus, we obtain the desired result that F.O.C.(py) = 0. To summarize, the pseudo-true

values are given by

pe = po =9, o = (E[HHT) "E[AN, (A.51)
W = BN -ENH)(BHA))'E[HN. =
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A.3.2 Computation of the Oracle Predictor in Experiment 3
We are using a Gibbs sampler to compute the oracle predictor under the mixture distributions

for both A; and Uy;.

Here we combine the scale mixture and the location mixture in a unified framework. Let
a;; = 1 if Uy is generated from the mixture component with mean ., and variance 7_%, and
ai; = 0 if Uy is generated from the mixture component with mean p_ variance 42. Then,
pr = pi— = 0 for the scale mixture, and 73 = 4> = +? for the location mixture. Also, let b;

be an indicator of the components in the correlated random effects distribution, such that

¢4 (Yio), if b; =1,

P¥io. be) = { 6 (Yio), if b = 0.

Omitting ¢ subscripts from now on, define

Y, =Y, = pYiot — (aps + (1 —adp-),  7*(a) = ayt + (1 — a)y?,

so we have

Yi(a)| (A, ar) ~ N (A7 (ar)).

Conditional on b, the prior distribution is
Al(Yo, b) ~ N(¢(Yo,0),£2),
and we obtain a posterior distribution of the form
A (Yo.r, arr, b) ~ N(E\(GLT, b), Q(CLLT)), (A.52)

where

Qarr) = (7 +3 ()™

Marr,b) = Q(alzT)(Q_1¢(Y()ab)JFZ(VQ(at))_l?t(at)»

t=1
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The posterior probability of a; = 1 conditional on (), Yo.7) is given by

P(a; = 1|\, Yo.r) (A.53)
pulrs)~exp { =2 (1) = 0%}
pulr2)~ exp { =7 (Fi1) = A2} + (1 = pu)(3-) exp { = A (Fa(0) = 07}

And the posterior probability of b = 1 conditional on (\, Yo.r, ai.r) is given by
]P)(b = 1‘)\, YE):T, CL1;T) <A54)
va, at Y. 2
Px exp { 52 #A)O))}

a a 2 .
presp {0, S P (1) exp {1 57, il GO

The posterior mean E[A|Yy.7] can be approximated with the following Gibbs sampler.
Cenerate a sequence of draws {\*, a$.;-, b} by iterating over the conditional distributions
given in (A.52), (A.53), and (A.54). Denote p(ay.r,b) = P(b|A, Yo, ar.r), then,

(aiTv b)/_\(ai:T7 b)’ (A55)

=

1
EYor] = >3
s=1 b=0

VAYer) = & m(‘mm+2p<aiT,bW<aiT,b>)—(E[A|m)2.
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A.4 Proofs for Section 5.3

Lemma A.9 Suppose that T > k, + 1 > 2. Suppose that W is a T x k, matriz with
rank(W) = k. Let 3 be a T x T matriz of rank T. Let S = XW. Then, rank(MggsB) = T,
where Msgs and B are defined in the proof of Theorem 5.3.

Proof of Lemma A.9. Notice that the matrix B is a T? x T selection matrix that has one
at positions (1,1), (T + 2,2), (2T + 3,3), ..., (T?,T) and zeros at the other positions. Notice
that since ¥ is full rank, rank(S) = rank(XW) = rank(W) = k,. If rank(S) = k,, then
rank(S ® S) = k2. Since the rank of the projection matrix is the same as its trace, we have
rank(Msgs) = tr(Msgs) = T? — k2.

By the spectral decomposition, we can decompose Mggs = FAF’, where F is a T? x T?
orthogonal matrix and A is a T? x T? diagonal matrix whose first 7% — k2 elements are one
and the rest are zero. Since F' is full rank, rank(MggsB) = rank(FAF'B) = rank(AF'B).
Notice that F'B is a T? x T matrix that collects the columns of F’ in the positions of
1,T+2,2T + 3,...,T?. Since the columns of F’ are linearly independent, rank(F'B) = T.
Notice that AF’B is a submatrix of F’B that selects the first T2 — k2 rows. Since T—1 > k,,
and T > 2 implies that T? — k2 > 2T — 1 > T, the (T?% — k2) x T submatrix of F'B, AF'B,
has rank 7". [

The matrix E[(W},, X}, Z},)'(W},, X},, Z},)] has full rank for ¢ = 1,...,7. The matrices
ZsttH Wis 1 Wi
1

,....N.

_, are invertible with probability one for all ¢t = 1,...,7 — k,, and i =

Proof of Theorem 5.3. (i) The parameters a and p are identifiable by Assumption 5.2.

(ii) Let Y;, W;, X;, Z; and U; denote the matrices vectors that stack Yy, W,_,, X}, 4,
Z!,_y, and Uy, respectively, for t = 1,...,T. Define

Z;/Z(’Y) = diag(o1(hi,n), -, or(hi, 7)),
Si(y) = S7POWi, M(y) =1 — Si(8.5;) 71

2

Using this notation, we obtain

M) Z 2 (3) (Vi — Xip — Zsat) = Mi(3)S:(A) N + My(3)Z; 2 (3)U; = Mi(7)Vi.

7 7
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This leads to the conditional moment condition

E[M;(7)5; 23 (Y: — Xip — Zio) (Yi — Xip — Zia)'S; 2(F)MI(F) — Mi(3)| Hi] =0,

7 7
which can be rewritten as

M(3) (27300 D2 (7) — D) M(7) = 0. (A.56)

(3 3

for each h;. Taking expectations with respect to H; and using Assumption 5.2(ii), we deduce
that
E[M;(3) (57 B S (3) - DM{@)] =o. (A57)

if and only if ¥ = .

(iii) The subsequent argument is similar to the proof of Theorem 2 in Arellano and
Bonhomme (2012). Conditional on p, «, and v we can remove the effect of X; and Z; from
Y, and define

Y =3 P()(Yi = Xip — Zia) = Si(7)\i + Vi (A.58)

To simplify the notation, we will omit the ¢ subscripts and the + argument in the remainder

of the proof.

Because S(7), A and V' are independent conditional on H (and ), we have
In Uy (7]h) = In Uy(S'7|A) + In Ty (1) (A.50)

Taking the second derivative with respect to 7 leads to

0? 0? 0?
—— In Uy = In W, (S’ + In ¥ A.
gror r(7lh) 87’87”(n A(S7IR)) gror v(7) (4.60)
0? 0? In O
= In W, (S’ ' — .
S (8585’ nWv,(S T\h)) S 550 1 v(T)

Using the assumption that the V;s are independent over ¢, we can write

T
mUy(r) =Y Iy (n),
t=1
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where Wy, is the characteristic function of V;. Then,

o’ (D o?
vec <87’87” In \IIV(T)) = vec (dlag (8_712 In Wy, (1), ..., 8_7'% In \IIVT(TT)>> (A.61)

2 2 /
= B (G () g ()

2 2
oT{ ot3

for a suitably chosen matrix B. Let

Msgs = I — S(5'S)"18' ® S(S'S)~1".

Then,
02 0? '
Mggsvec(In Uy (7|h)) = MsgsB <W In Uy, (1), ..., 92 In \I/VT(TT)) . (A.62)
i T2

Because (%) is of full rank 7" (Assumption 5.2(iii)) and W is of full rank of k,, (Assumption
5.2(iv)), S(vy) has full rank k,. Notice that T > k, + 1. Then, according to Lemma
A9, MggsB is also full rank. In turn, from (A.62), we can identify In Wy, (7;) uniquely for
t=1,...,T. Also using the restrictions that (,% In ¥y, (0) =0 (E(Vi) = 0) and In Wy, (0) = 0,
we can deduce that the characteristic function of V; is uniquely identified.

Next, we show how to identify In ¥, (7|h). Because In Uy (7|h) and In Wy (7) are identified,
from (A.59) we obtain

Uy (7lh) —In Wy (1) = In W,y (S'7|h). (A.63)

Taking second derivatives, we obtain

82 - 82 !/ !
E (ln Uy (rlh) — ;m \PV@)) =9 (agag In (S T|h)) S, (A.64)
Because S is of full rank, we can identify

82 ! _ roN—1 ¢/ 82 B - rQy—1
geoe M OASTIR) = (59) 7S [W)T, <lany(7|h)—;ln\11v(n)>]S(SS) . (A.65)

The mean E(A|h) can be identified as follows. Note that

A= (588)718"Y = A+ (5'9)"'S'V. (A.66)
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Taking expectations yields
E(\h) = E[\A], (A.67)

because E[(S'S)~ 1SV |h] = (S ’S)_IS’E[VW] = 0. Once the mean has been determined, we
can identify In W,(¢|R) using ¢ % In W, (0|h) = E(A|h) and In ¥, (0|h) = 0. A

Discussion of Assumption 5.2(i). We discuss an example of how to identify « and p
based on moment conditions in the general model (1). Under the model (1) we can remove

the effect of \; with the following within projections:

. -1
Y;)t)< - Y;t—(ZYWlls 1><2VV151 is— 1) Wit—1

s=t+1 s=t+1
-1
k
Xit—l = zt 1= ( E X’LS 1 15— 1) < E Wzs 1 is— 1) Wit—l
s=t+1 s=t+1
T —1
*
Zzt_l - th—l - E ZZS 1 18s—1 E Wzs 1 15—1 Wlt—l
s=t+1 s=t+1

fort =1,...,T — k,. Because E[U;|Y;"""!, H;, \;] = 0, we obtain the moment condition

E =0 (A.68)

(Y;—[ﬁ’ a |

) [ Xz(t—s—l Zét—s—l ]

for s > 0. To simplify the exposition, suppose that we choose [X;;_1, Z;;_1] as instrumental
variables. In this case, for the moment conditions to be only satisfied only at p = p and

a = « it is necessary that the matrix

* / * /
Xitleitfl XithZitfl
* / * !/
Zit—lXit—l Zit—IZit—l

E (A.69)
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is full rank. Consider, for instance, the upper-left element. We can write
E[XG 1 X ]

_ —1
= E Xit—1 — (Z Xisa W, is— 1) <Z Wis W, is— 1) Wit thfl

s=t+1 s=t+1

- —1

s=t+1 s=t+1
1 T
— ]E[Xit—le{t—l] - T—_h( Z E|:]E’[Xis—lXit—1|Wit:T_1]
s=t+1
-1
XWZ/S 1( Z W’LS 1 18— ]_) W’Ltl:|)
s=t+1
1 T
= E[Xuy X 4] - T Z ksE[Xiso1X}y_1] =1+ 11, say.
s=t+1

The fourth equality is based on the assumption that the W,,’s are strictly exogenous. The

completion of the identification argument requires a moment bound for

-1
zs 1< Z VV%S 1 18— 1) VVit—l] 9

s=t+1

=E

a full rank condition on E[X;, 1 X/, ], and a condition that ensures that term II does not
induce a rank deficiency in term /. Similar conditions need to be imposed on the terms that

appear in the other submatrices of (A.69).
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B Data Set

The construction of our data is based on Covas, Rump, and Zakrajsek (2014). We down-
loaded FR Y-9C BHC financial statements for the quarters 2002Q1 to 2014Q4 using the
web portal of the Federal Reserve Bank of Chicago. We define PPNR (relative to assets) as

follows
PPNR = 400(NII + ONII — ONIE) /ASSETS,
where
NII = Net Interest Income BHCK 4074
ONII = Total Non-Interest Income BHCK 4079
ONIE = Total Non-Interest Expenses BHCK 4093 - C216 - C232
ASSETS = Consolidated Assets BHCK 3368

Here net interest income is the difference between total interest income and expenses. It
excludes provisions for loan and lease losses. Non-interest income includes various types of
fees, trading revenue, as well as net gains on asset sales. Non-interest expenses include, for
instance, salaries and employee benefits and expenses of premises and fixed assets. As in
Covas, Rump, and Zakrajsek (2014), we exclude impairment losses (C216 and C232). We
divide the net revenues by the amount of consolidated assets. This ratio is multiplied by 400

to annualize the flow variables and convert the ratio into percentages.

The raw data take the form of an unbalanced panel of BHCs. The appearance and
disappearance of specific institutions in the data set is affected by entry and exit, mergers
and acquisitions, as well as changes in reporting requirements for the FR Y-9C form. Note
that NII, ONII, and ONIE are reported as year-to-date values. Thus, in order to obtain
quarterly data, we take differences: Q1 — Q1, (Q2 — Q1) — Q2, (@3 — Q2) — @3, and
(@4 — Q3) — Q4. ASSETS is a stock variable and no further transformation is needed.

Our goal is to construct rolling samples that consist of 7"+ 2 observations, where T is
the size of the estimation sample and varies between T" = 3 and T" = 11. The additional
two observations in each rolling sample are used, respectively, to initialize the lag in the first
period of the estimation sample and to compute the error of the one-step-ahead forecast. We
index each rolling sample by the forecast origin ¢ = 7. For instance, taking the time period ¢
to be a quarter, with data from 2002Q1 to 2014Q4 we can construct M = 45 samples of size
T = 6 with forecast origins running from 7 = 2003Q3 to 7 = 2014Q)3. Each rolling sample is
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indexed by the pair (7,7"). The following adjustment procedure that eliminates BHCs with

missing observations and outliers is applied to each rolling sample (7,T") separately:

1. Eliminate BCHs for which total assets are missing for all time periods in the sample.

2. Compute average non-missing total assets and eliminate BCHs with average assets

below 500 million dollars.

3. Eliminate BCHs for which one or more PPNR components are missing for at least one

period of the sample.

4. Eliminate BCHs for which the absolute difference between the temporal mean and the

temporal median exceeds 10.

5. Define deviations from temporal means as d; = y;; — 7;- Pooling the d;;’s across insti-
tutions and time periods, compute the median ¢y 5 and the 0.025 and 0.975 quantiles,

Go.o25 and qoo75. We delete institutions for which at least one ¢ falls outside of the

range (o5 = (QO.975 - Q0.025)-

The effect of the sample-adjustment procedure on the size of the rolling samples is sum-
marized in Table A-1. Here we are focusing on samples with 7" = 6 as in the main text.
The column labeled N, provides the number of raw data for each sample. In columns N;,
7 =1,...,4, we report the observations remaining after adjustment j. Finally, N is the
number of observations after the fifth adjustment. This is the relevant sample size for the
subsequent empirical analysis. For many BCHs we do not have information on the consoli-
dated assets, which leads to reduction of the sample size by 60% to 80%. Once we restrict
average consolidated assets to be above 500 million dollars, the sample size shrinks to ap-
proximately 700 to 1,200 institutions. Roughly 10% to 25% of these institutions have missing
observations for PPNR components, which leads to N3. The outlier elimination in Steps 4.

and 5. have a relatively small effect on the sample size.

Descriptive statistics for the 7' = 6 rolling samples are reported in Table A-2. For each
rolling sample we pool observations across institutions and time periods. We do not weight
the observations by the size of the institution. Notice that the mean PPNR falls from
about 2% for the 2003 samples to 1.24% for the 2010Q2 sample, which includes observations
starting in 2008Q4. Then, the mean slightly increases and levels off at around 1.3%. The

means are close to the medians, suggesting that the samples are not very skewed, which is
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confirmed by the skewness measures reported in the second to last column. The samples

also exhibit fat tails. The kurtosis statistics range from 4 to 190.
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Table A-1: Size of Adjusted Rolling Samples (7' = 6)

Sample Adjustment Step

T N() N1 Ng N3 N4 N
2003Q3 6176 2258 710 653 653 614
2003Q4 6177 2289 730 658 658 618
2004Q1 6142 2351 744 660 660 622
2004Q2 6089 2375 7h4 657 657 613
2004Q3 6093 2416 778 669 668 624
2004Q4 6090 2448 787 668 667 621
2005Q1 6101 2486 797 680 679 629
2005Q2 6077 2489 809 695 694 644
2005Q3 6083 2473 826 718 717 660
2005Q4 6050 2451 828 728 727 658
2006Q1 6054 2425 834 715 715 664
2006Q2 6024 2403 849 734 734 685
2006Q3 6053 2376 858 747 747 697
2006Q4 6038 2367 830 757 757 711
2007Q1 6075 2355 905 772 772 727
2007Q2 6044 2337 929 T7T TUT 732
2007Q3 6054 1101 941 773 773 712
2007Q4 6038 1061 919 769 769 710
2008Q1 6014 1081 945 770 770 713
2008Q2 5997 1070 942 775 775 722
2008Q3 5953 1062 949 784 784 731
2008Q4 5947 1058 949 792 792 741
2009Q1 5904 1113 1006 795 795 744
2009Q2 5878 1104 996 795 795 745
2009Q3 5805 1087 986 799 799 749
2009Q4 5793 1081 977 809 808 754
2010Q1 5709 1124 1015 800 799 744
2010Q2 5700 1116 1005 800 799 738
2010Q3 5665 1105 997 795 794 727
2010Q4 5652 1105 996 844 843 780
2011Q1 5586 1131 1027 838 837 773
2011Q2 5566 1129 1027 836 836 777
2011Q3 5483 1119 1018 833 833 770
2011Q4 5636 1115 1011 864 864 797
2012Q1 5876 1259 1154 863 863 794
2012Q2 5847 1240 1140 858 858 792
2012Q3 5809 1226 1135 849 849 789
2012Q4 5793 1216 1124 878 878 811
2013Q1 5749 1246 1157 875 875 808
2013Q2 5739 1245 1153 874 874 806
2013Q3 5699 1230 1142 874 874 805
2013Q4 5695 1233 1143 997 995 920
2014Q1 5603 1253 1162 979 977 899
2014Q2 5572 1237 1143 973 972 897
2014Q3 5514 1231 1140 966 965 898
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Table A-2: Descriptive Statistics for Rolling Samples (7" = 6)

Sample Statistics

T Min Mean Median Max StdD Skew Kurt
2003Q3 2.04 -2.10 2.00 12.01 0.90 3.00 29.46
2003Q4 2.02 -1.43 1.98 11.18 0.87 2.75 25.03
2004Q1 1.99 -2.10 1.95 11.18 0.91 3.13 29.90
2004Q2 1.96 -0.98 1.92 11.18 0.83 2.76 27.24
2004Q3 1.92 -0.98 1.89 10.80 0.76 2.06 22.28
2004Q4 1.90 -0.83 1.88 6.06 0.69 0.52 4.85
2005Q1 1.89 -0.73 1.87 6.01 0.70 0.62 4.94
2005Q2 1.90 -0.73 1.87 5.7 0.70 0.61 4.74
2005Q3 1.91 -0.60 1.87 999 0.74 1.56 13.97
20056Q4 1.88 -0.60 1.85 530 0.70 0.46 4.13
2006Q1 1.87 -0.60 1.84 530 0.69 0.50 4.09
2006Q2 1.86 -0.89 1.82 530 0.71 0.50 4.09
2006Q3 1.83 -2.05 1.80 530 0.74 0.30 4.58
2006Q4 1.81 -2.05 1.77 530 0.75 0.32 4.45
2007Q1 1.78 -2.19 1.73 530 0.76 0.30 4.46
2007Q2 1.75 -2.36 1.70 5.68 0.77 0.32 4.97
2007Q3 1.71 -1.67 1.67 568 0.75 0.40 4.94
2007Q4 1.67 -1.67 1.63 6.00 0.75 0.50 5.33
2008Q1 1.64 -2.20 1.59 1592 0.88 4.21 61.22
2008Q2 1.59 -2.20 1.56 15.92 0.88 4.23 63.45
2008Q3 1.52 -2.61 1.51 1592 090 3.69 57.87
2008Q4 1.46 -3.56 1.47 1570 090 3.12 50.67
2009Q1 1.39 -2.61 1.42 6.53 0.81 -0.13 6.22
2009Q2 1.33 -2.61 1.37 6.53 0.83 -0.23 6.33
2009Q3 1.29 -4.10 1.35 753 0.89 -0.46 7.09
2009Q4 1.27 -4.10 1.33 7.53 0.87 -0.45 6.93
2010Q1 1.26 -3.59 1.32 753 0.86 -0.41 6.92
2010Q2 1.24 -3.59 1.30 5.83 0.85 -0.68 5.97
2010Q3 1.26 -3.54 1.32 583 0.85 -0.56 5.70
2010Q4 1.27 -3.78 1.32 729 0.88 -0.26 6.51
2011Q1 1.29 -3.32 1.34 729  0.87 -0.27 6.58
2011Q2 1.31 -3.32 1.36 865 0.90 0.10 8.05
2011Q3 1.31 -2.83 1.36 865 091 0.38 9.20
2011Q4 1.32 -2.83 1.36 798 0.88 0.26 8.57
2012Q1 1.31  -2.80 1.36 798 0.87 0.22 8.48
2012Q2 1.30 -2.87 1.35 798 0.88 0.24 8.46
2012Q3 1.32 -3.03 1.35 798 0.90 0.47 9.09
2012Q4 1.32 -3.03 1.35 798 0.89 0.49 9.36
2013Q1 1.33 -3.03 1.35 798 0.86 0.51 9.31
2013Q2 1.36 -2.87 1.34 22.32 1.07 7.15 125.30
2013Q3 1.32 -2.78 1.32 6.89 0.82 0.71 9.54
2013Q4 1.32  -2.78 1.29 22.32 1.03 7.39 133.39
2014Q1 1.31 -2.78 1.28 22.32 1.01 8.43 160.34
2014Q2 1.29 -2.78 1.28 7775 079 1.38 13.12
2014Q3 1.33 -2.78 1.28 24.49 1.08 9.82 191.05

A-H4

Notes: The descriptive statistics are computed for samples in which we pool observations across institutions
and time periods. We did not weight the statistics by size of the institution.





