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A: Model Solution and Omitted Proofs 

We begin by deriving equation (14) in the main text. Each firm chooses current net 

investment to maximize the expected net present value of earnings. Each firm’s Bellman equation is 
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where r > 0 is the constant discount rate or required return used by firms. The first order condition 

for firm net investment is 
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 The Envelope Theorem implies that1 
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 Assuming the standard “no bubbles” condition holds,2 we can iterate (A3) forward to obtain 

                                                 
1 To see this, suppose that ݅ݐ

∗ is the optimal policy action so that 
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 This shows that firm net investment is given by the familiar q-theory type investment equation 
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 where Pr is the replacement cost of a ship and 
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is the market price of a ship. 

 The Bellman operator for this problem satisfies Blackwell’s Sufficient Conditions and is a 

Contraction Mapping. Therefore, the Contraction Mapping Theorem implies that there is a unique 

solution to the Bellman Equation. Thus, if we can guess and verify a solution to the Bellman 

equation, then this must be the unique solution. Specifically, using equations (A5) and (A6) it is 

easy to check that the following function solves the Bellman equation in (A1): 
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Proposition 1 (Equilibrium investment and prices): There exists a unique equilibrium 

such that the net investment of the representative firm is * * * *
t i i t i ti x y A z Q    and equilibrium ship 

prices are * * * *
t r i i t i tP P kx ky A kz Q    . The two slope coefficients (i.e., *

iy and *
iz ) are a function of 

five exogenous parameters: k, r, f, , and B. In addition to these five parameters, the intercept term 

(i.e., *
ix ) also depends on A, C, , and Pr. 

Investment and ship prices are decreasing in the current fleet size ( * 0iz  ). Furthermore, (i) 

investment and prices react more aggressively to the current fleet size when firms underestimate the 
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competition (i.e., * / 0iz    ); (ii) firms’ response to the current fleet size independent of the 

perceived persistence of demand (i.e., * / 0i fz    ); (iii) investment and prices react more 

aggressively to the current fleet size when the demand curve is more inelastic (i.e., * / 0iz B   ); 

(iv) investment and prices react less aggressively to current fleet size when required returns are 

higher (i.e., * / 0iz r   ); and (v) when adjustment costs are higher, investment reacts less 

aggressively to current fleet size but prices react more aggressively (i.e., * / 0iz k    and 

* * *( ) / ( / ) 0i i iz k k z k z k        ). 

Investment and ship prices are increasing in current demand ( * 0iy  ). Furthermore, (i) 

investment and prices react more aggressively to current demand when firms underestimate the 

competition (i.e., * / 0iy    ); (ii) investment and prices reacts more aggressively to current 

demand when demand is more perceived to be persistent (i.e., * / 0i fy    ); (iii) investment and 

prices react less aggressively to current demand when demand curve is more inelastic (i.e., 

* / 0iy B   ); (iv) investment and prices react less aggressively to current demand when required 

returns are higher (i.e., * / 0iy r   ); and (v) when adjustment costs are higher, investment reacts 

less aggressively to current demand but prices react more aggressively ( * / 0iy k    and 

* * *( ) / ( / ) 0i i iy k k y k y k        ). 

Proof: We first solve for the equilibrium coefficients. We then prove the comparative statics 

discussed above and then characterize the system dynamics. 

Solve for the equilibrium coefficients: We conjecture that  
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 Using (10), (12), (15), and (20), the equilibrium must satisfy 
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Both the left-hand and right-hand size are linear in At, and Qt. Thus, by matching coefficients in 

(A8), we can then solve for the fixed-point values of xi, yi, and zi.   

Specifically, matching coefficients on Qt, shows that the equilibrium value of zi satisfies 

*0 ( )if z where 

( ) ² ( ) .f z k z kr B z B         (A10)

 
We want the negative root of the quadratic in (A10) which is 
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 when 0   and * / ( )iz B kr   when 0.   Given this solution for *
iz , matching coefficients on At 

and the constant shows that the equilibrium values of yi  and xi are given by 
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 Uniqueness of the equilibrium: We now show that the linear equilibrium described in 

Proposition 1 is the unique stationary equilibrium of the model. To show this is the case, we 

conjecture an alternate stationary equilibrium of the form 
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 where ( , )t tg A Q  is an arbitrary function of the state variables. Proceeding as above, we again obtain 

conditions (A11), (A12), and (A13) as well as a functional equation characterizing ( , )t tg A Q : 
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 Iterating on (A15) and making use of the law of iterated expectations, we have 
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 Since the conjectured equilibrium is stationary, we have  lim ( , ) | ,k t t k t k t tE g A Q A Q c     for 

some constant c irrespective of the initial values of At and Qt. Thus, since *1 / ( ) 1iB kz   equation 

(A16) shows that we must have ( , ) 0t tg A Q   in any stationary equilibrium. 

Comparative statics for *
iz : Before proceeding we first show that 

* 1 0.iz    (A17)
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With (A17) in hand, we now proceed to the comparative statics for *
iz . Since 

*2 *0 i ia z b z c      where 0a k   , 0b kr B   , and c B . Thus, by the Implicit Function 

theorem, we have 
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 for any primitive model parameter. Thus, we have: 

  * *2 */ 0i i iz z k z B         ; 

 * / 0i fz    ; 

  * */ 1 0i iz B z      ; 
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 * */ 0i iz r kz     ; 

  * *2 */ 0i i iz k z z r         ; 
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Comparative statics for *
iy : Recall that *
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Thus, we have 

 * / 0iy    : Obvious since * / 0iz    ; 

 * / 0i fy    ; 

 * / 0iy B   : Obvious since * / 0iz B   ; 

 * / 0iy r   : Obvious since * / 0iz r   ; 

 * / 0iy k   : Obvious since *( ) / 0ikz k   ; 

 * * *( ) / ( / ) 0i i iky k y k y k        : Note that *
*

.
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Since *( ) / 0ikz k  

, the denominator is decreasing in k which shows that *( ) / 0.iky k      ■ 

System dynamics and stability: The true system dynamics perceived by the econometrician 

can be summarized using a vector auto-regression: 

1 0 10
* **

1

0(1 )
.

1 0
t t t

t i i ti

A AA

Q y z Qx

  



        
                  

 (A19)

 Therefore, the true steady state is given by 
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assuming that 0 1   and * 1iz    so the matrix is invertible.  

The system dynamics are governed by sign and magnitude of the second eigenvalue of the 

2 2  matrix in (A19). Specifically, the two eigenvalues are 1 0   and *
2 1 iz   . Specifically, 
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the dynamics are oscillatory if 2 0   and non-oscillatory if 2 0  ; and the system has convergent 

dynamics which return it to the steady state if 2 1   and divergent dynamics if 2 1  .  

Above we showed that *0 1 1iz   . Thus, in the rational expectation case ( 1  ) we 

always have non-oscillatory and convergent dynamics. When 0 1  , we can have either non-

oscillatory dynamics about the steady-state if *1 0iz   or oscillatory dynamics if *1 0iz  . When 

0 1  , we can have *1 1iz   , corresponding to divergent, oscillatory dynamics if (i) is 

sufficient close to 0 and (ii) B is sufficiently large or k is sufficiently small. Obviously, in our model 

simulations and estimation we focus on the empirically relevant case with convergent dynamics. 

Steady-state distribution induced by model: We can rewrite equation (A19) as 
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Taking variances of both sides of (A21), the variance of the system about the steady-state satisfies 
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Solving (A24) for the 3-unknown parameters, we obtain 
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since *(1 ) 1iz    in any stationary distribution induced by the model. 

 Straightforward algebra shows that the variance of earnings is 
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and the variance of prices is 
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We can also use (A21) to characterize the path and auto-covariance of earnings in the 

model. Specifically, we have 
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 (A28) 

Thus, the auto-covariance of ship earnings is 
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And the auto-correlations of earnings are given by 
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System dynamics and steady-state distribution perceived by firms: The system dynamics 

perceived by firms are 

1 1
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 (A30)

 so the perceived steady state is given by 
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 (A31)

 
Thus, firms perceive the same steady-state as the econometrician. However, since *0 1 1iz    

firms expect the dynamics to be convergent and non-oscillatory. 

We can rewrite equation (A30) as 
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 (A32) 

Taking variances of (A32), the perceived variance of the system about the steady-state is 
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 (A33) 

Thus, we obtain 
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 (A35) 

and 
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 (A36) 

 The perceived variance of earnings is 
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 (A37) 

and the perceived variance of prices is 
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 (A38) 

We can use (A32) to characterize the path of earnings expected perceived by firms.  
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 (A39) 

Thus, the perceived auto-covariance of ship earnings is 
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 (A40) 

And the auto-correlations of earnings perceived by firms are given by 
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Special case where 0,  =1,  0 and 0.f C     : We now focus on the special case 

discussed in the text. As above, *
iz  is given in equation (A11). In this case, it is also easy to see that 

* * /i iy z B   and * *( ) /i i rx z rp B , which implies that aggregate investment is 

* *( / )( ) ( / )( )t i t t r i t rI z B A BQ rP z B rP        . Thus, steady-state earnings are *
rrP   and the 

initial steady-state fleet size is *
0 0( ) ( ) /rQ A A rP B  . Thus, following the shock at time 0, the 

equilibrium price at time t > 0 *( / )( )t r i t rP P k z B rP     and *
1 ( )t t t t i t rBI z rP         . 

Thus, the realized return from owning and operating a ship between time t and t+1 along the 

equilibrium path following the initial shock is 
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 (A30)

 

It is easy to show that 11 1tR r    when 1   and that for [0,1)  1tR r   when t rrP   and 

1tR r   when t rrP  . Thus, expected returns are below r when t rrP  —i.e., when prices and 

earnings are above their steady state and investment is positive. 

Invariance: Note that 

2
* 1 1 1 1 1

,
2 2 2 2i

r B r B B
z

k k k  
      
 

 

 
only depends on B/k. Furthermore, *

ikx  and *
iky  only depend on B/k. Thus, if we change B and k 

proportionately holding B/k constant, it is easy to see that this has a proportional effect on It and Qt, 

but has no effect on It /Qt,  t, Pt, or Rt+1, and thus no effect on any of the moment conditions used 

in our SMM estimation exercise. 



A-11 
 

 It is also straightforward to see that a change in A  or C has an additive effect on the fleet 

size Qt, but has no effect on It, t, Pt, or Rt+1. As a result, a change in these parameters has a small 

impact on It /Qt. 

Equilibrium expected returns: Expected returns will generally not equal firms’ required 

returns. Specifically, equation (A9) insures that
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 (A31)

 

by construction. In words, the representative firm expects that holding period returns will equal the 

required return on capital, r. However, the true expected return perceived by the econometrician—

who does not suffer from competition neglect and does not overestimate the persistence of demand 

shocks—will generally differ from 1 + r. Specifically, we have
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Subtracting (A31) from (A32) shows that 
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 (A33)

 Equation (A33) gives the general expression for expected returns when 1   and 0f  . 

Although (A33) shows that expected returns can be decomposed into a term that vanishes when 

there is full competition awareness ( 1  ) and a term that vanishes when there is no demand over-
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extrapolation ( 0f  ), these two biases do interact in our model. Specifically, since * / 0iy   

and * / 0i fy    , demand over-extrapolation naturally amplifies the return predictability due to 

competition neglect and vice versa. 

Since the latent demand process, At, is not readily observable, it is useful to recast equation 

(A33) in terms of observables, namely, industry net investment ( N
tI ) and operating profits ( t ) 

which contain the same information as At and Qt. Note that 
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(A12) implies * * * *(1 ) (1 )i i i i fz By ky z     . Thus, using our expression for At and (A13), yields 
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Therefore, we obtain 
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 (A34)

 
Proposition 2 (Forecasting regressions): In a neighborhood of the steady-state: 

(a) Consider a multivariate regression of returns on demand ( tA ) and fleet size ( tQ ). If 1   or 

0 f  , then 0 1[ | , ] / 0t t t tE R A Q A   . If 1  , then 0 1[ | , ] / 0t t t tE R A Q Q   . 

(b) If 1   or 0 f  , then investment ( tI ), prices ( tP ), and profits ( t ) will each negatively 

forecast returns in a univariate regression. 

(c) Consider a multivariate regression of returns on investment ( tI ) and profits ( t ). 
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(i) If there is competition neglect but no demand over-extrapolation ( 1   and 0f  ), 

then 0 1[ | , ] / 0t t t tE R I I     and 0 1[ | , ] / 0t t t tE R I    ;  

(ii) If there is demand over-extrapolation but no competition neglect ( 1   and 0f  ), 

then 0 1[ | , ] / 0t t t tE R I     and 0 1[ | , ] / 0t t t tE R I I    ; 

(iii) If there is both competition neglect and over-extrapolation, (i.e., 1   and 0f  ), 

then we always have 0 1[ | , ] / 0t t t tE R I    . Furthermore, if competition neglect is 

relatively important in the sense that    * *
0( ) / (1 ) / ( ( )) (1 ),f f i iB z B kz          

then 0 1[ | , ] / 0t t t tE R I I    . Otherwise, if competition neglect is relatively 

unimportant, then 0 1[ | , ] / 0t t t tE R I I    . 

Proof:  We have 
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Thus, in a neighborhood of the steady state, *( , ) ( , )t tA Q A Q , we have 

  *
1 * * 1 *0 1 0 1

0

| , [ | , ]
(1 ) ( ) ( ) (1 ) 0,t t t t

r i i f r i
t t

E R A Q E R A Q
P y B kz P ky

A A
     

        
 

 (A35)

 and 

  *
1 * *0 1 0 1| , [ | , ]

(1 ) ( ) 0.t t t t
r i i

t t

E R A Q E R A Q
P z B kz

Q Q
   

     
 

 (A36)

 Part (a) follows from inspecting (A35) and (A36). 

To prove part (b), we approximate expected returns as 

  1 * * *
0 1 0

1 * * *

1 | , (1 ) ( ) ( )(1 ) ( )

                                     (1 ) ( ) ( ).

t t t r i i f i t

r i i t

E R A Q r P y B kz ky A A

P z B kz Q Q

  








           
      

 (A37)

 Therefore 
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 1 0 1

1 * * 2 2 * 2 2 * *

1 * * 2 *
0

[ , ] [ | , , ]

                     (1 )( )[( ) ( ) 2 ]

                             ( )(1 )[ ]

t t t t t t

r i i A i Q i i AQ

r f i i A i AQ

Cov R I Cov E R A Q I

P B kz y z y z

P ky y z

   

   

 







     

   

 (A38)

 
(A38) is negative since * 2 2 * 2 2 * *[( ) ( ) 2 ] [ ] 0i A i Q i i AQ ty z y z Var I       and 

* 2 * * 2 *
0 0[(1 ) / (1 (1 ))] 0i A i AQ i A iy z y z          . Similarly, we have 

 1 0 1

1 * * 2 * 2 * *

1 * 2
0

[ , ] [ | , , ]

                     (1 )( )[ ( ) ]

                             ( )(1 )[ ].

t t t t t t

r i i A i Q i i AQ

r f i A AQ

Cov R Cov E R A Q

P B kz y Bz By z

P ky B

   

   

 





  

      

   

 (A39)

 
(A39) is negative since algebra shows * 2 * 2 * *[ ( ) ] 0i A i Q i i AQy Bz By z       and 2[ ] 0A AQB   . 

To prove part (c), note that 

* *
0*0 1

2 2

( )[ | , ] ( / ) ( )
(1 )( ) ,

( ) 1 ( )
ft t t r i r t

i
t r t f r t

E R I P B z P k
B kz

I P kI P kI

 





      
          

 and 

00 1
( )[ | , ] 1

.
1

ft t t

t f r t

E R I

P kI

 



 

 
  

 Thus, in a neighborhood of the steady state, *( , ) (0, )t tI    , we have 

*
01 * 1 *0 1 0 1[ | , ] [ | 0, ]

(1 ) ( ) ( / ).
1

ft t t t
r i r i

t t f

E R I E R
P B kz P B z

I I

 



  

   
     

  
 (A40)

 and 

*
0 10 1 0 1[ | , ] [ | 0, ]

.
1

N
ft t t t

r
t t f

E R I E R
P

 


 
   

  
  

 (A41)

 
Part (c) follows from inspecting (A40) and (A41).       ■ 

Proposition 3 characterizes how these predictability results vary with the underlying model 

parameters. Specifically, we take comparative statics on the forecasting results near the model’s 

steady-state. However, when computing these comparative statics, we allow the steady-state of the 

model to change where relevant. 



A-15 
 

Proposition 3 (The role of competition neglect, demand over-extrapolation, inelastic 

demand, and elastic supply): (a) Return predictability becomes stronger when competition neglect 

is more severe (i.e.,  2
0 1 | , / (1 ) 0t t t tE R A Q A       and  2

0 11 | , / (1 ) 0t t t tE R A Q Q       ) or 

demand over-extrapolation is more severe (i.e., 2
0 1[ | , ] / 0t t t t fE R A Q A     , but

2
0 1[ | , ] / 0t t t t fE R A Q Q     ). 

(b) The predictability due to competition neglect becomes stronger when demand is more 

inelastic and weaker when supply is more inelastic. Formally, when 1   and f = 0, 

2
0 1[ | , ] / 0t t t tE R A Q A B    , 2

0 1[ | , ] / 0t t t tE R A Q Q B    , 2
0 1[ | , ] / 0t t t tE R A Q A k    , and 

2
0 1[ | , ] / 0t t t tE R A Q Q k    . 

(c) The predictability due to demand over-extrapolation becomes weaker when demand is 

more inelastic and stronger when supply is more inelastic. Formally, when 1   and f > 0,

2
0 1[ | , ] / 0t t t tE R A Q A B     and

 
2

0 1[ | , ] / 0.t t t tE R A Q A k   
 

(d) In a multivariate regression of returns on earnings and investment, the coefficient on 

earnings becomes more negative when demand extrapolation is more severe (i.e., 

2
0 1[ | , ] / 0t t t t fE R I      ); the coefficient on investment falls when competition neglect is 

more severe and rises when demand extrapolation is more severe (i.e., 

2
0 1[ | , ] / (1 ) 0t t t tE R I I        and 2

0 1[ | , ] / 0t t t t fE R I I      ). Finally, when competition 

neglect is relatively important, the coefficient on investment becomes more negative when either 

demand or supply is more inelastic.
 

Proof: Part (a) follows from differentiating (A35) and (A36). Specifically, we have 

 2 *
1 * * 1 *0 1

* *
1 * 1

0

| ,
( ) (1 ) ( )

                                   (1 ) ( ) 0,

t t t i
r i i r i

t

i i
r i f r

E R A Q y
P y B kz P B kz

A

z y
P ky P k


 

  
 

 

 

 
    

  

 
    

 

 

 2 * *
1 * 1 * 10 1

0

| ,
(1 ) ( ) (1 ) ( ) 0,t t t i i

r i r i f r
t f f f

E R A Q y y
P B kz P ky P k

A
  

  
    

        
   

 

 2 *
1 * * 1 *0 1 | ,

( ) (1 ) ( 2 ) 0,t t t i
r i i r i

t

E R A Q z
P z B kz P B kz

Q


 
  

     
  
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and 

 2
0 1 | ,

0.t t t

t f

E R A Q

Q 



 

 Part (b) follows from differentiating (A35) and (A36) after setting 0f  . Specifically, 

   
2 * *

1 * *0 1

*
1 * 2

| ,
(1 ) 1

                             (1 ) 1 ( ) (1 ) / 0,

t t t i i
r i i

t

i
r i f f

E R A Q z y
P y k B kz

A B B B

z
P k y k r

B



  





    
            

 
        

 

 2 * *
1 * *0 1 | ,

(1 ) ( ) 1 0,t t t i i
r i i

t

E R A Q z z
P B kz z k

Q B B B
      

             

  2 * *
1 * *0 1

* *
1 * 2

*

| , ( )
(1 ) ( )

(1 )( ) ( )
                            (1 ) ( ) 0,

( 2 )

t t t i i
r i i

t

f i i
r i

f i

E R A Q kz y
P y B kz

A k k k

r B kz kr B kz
P y

kr B kz



 
 





   
        

     
      

 

and 

 2 * *
1 * *0 1

* *
1

*

| , ( )
(1 ) ( )

( )
                          (1 ) 0.

( 2 )

t t t i i
r i i

t

i i
r

i

E R A Q z kz
P B kz z

Q k k k

rz B kz
P

kr B kz










   
         

  
        

Part (c) follows from differentiating (A35) after setting 1  . Specifically, we have 

 2 *
10 1

0

| , ( )
( ) 0,t t t i

f r
t

E R A Q ky
P

A k k
   

   
  

 

and 

 2 *
10 1

0

| ,
( ) 0.t t t i

f r
t

E R A Q y
P k

A B B
   

   
  

 

Finally, part (d) follows from differentiating (A40) and (A41). Specifically, we have 

2 * *
01 * 1 10 1

* 2

[ | , ]
( ) (1 ) 0,

1 ( )
ft t t i i

r i r r
t f i

E R I z B z
P B kz P k P

I z

 


   
  

   
     

    
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2
1 *0 1 0

2

[ | , ] 1
( / ) 0,

(1 )
t t t

r i
t f f

E R I
P B z

I


 

  
  

  
 

and 

2
10 1 0

2

[ | , ] 1
0.

(1 )
t t t

r
t f f

E R I
P


 

  
  

  
 

Finally, differentiating (A40) after setting 0f  , we have 

2 *
10 1[ | , ]

(1 ) 1 0,t t t i
r

t

E R I z
P k

I B B
     

        
 

and 

2 *
10 1[ | , ] ( )

(1 ) 0.t t t i
r

t

E R I kz
P

I k k
   

  
  

       ■ 

Model extensions 

We have made a number of assumptions to keep the model tractable so as to transparently 

model the logic of competition neglect. For instance, we have assumed that demand follows a 

stationary process. One could easily add a deterministic time trend to demand and instead assuming 

that deviations of demand from trend are stationary. 

We have also assumed that ships have a constant replacement cost of Pr. However, it is 

straightforward to extend the model so ship replacement costs follows an AR(1) process. In that 

case, firm investment and ship prices are a linear function of the three state variables: the time-

varying replacement cost, Pr,t, as well as At and Qt.
3 

 We could also extend the model so that firms optimally choose ݅௧ே ൌ 0 for a non-degenerate 

set of values for At and Qt. For instance, we could add a fixed adjustment cost that is incurred 

whenever	|݅௧ே| ൐ 0. Alternately, we could introduce a wedge between the scrap value realized when 

                                                 
3 Thus, if we had time-series data on the real price of raw materials used to construct a ship—this is not the same as the 
price of a new ship which would reflect a potentially time-varying mark-up over cost—we could extend the model and 
consider this extension in our estimation below. 
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݅௧ே ൏ 0 and the replacement cost of a new ship incurred when ݅௧ே ൐ 0. To keep the model tractable, 

we have also assumed adjustment costs are symmetric. Obviously, any differences between the 

costs of increasing or decreasing the capital stock would generate asymmetries in the speed of 

adjustment to positive or negative demand shocks. 

 

B: Simulated Method of Moments 

 We use the Simulated Method of Moments (SMM) procedure to estimate the parameters of 

our model of industry cycles. We are interested in a 1L   vector of parameters .θ  Assume that we 

have M L  moment conditions of the form 

( ) ( ( )),T T m θ μ g θ  (B1)

 
where the Tμ are functions of our sample of T time-series observations (e.g., time-series means, 

time-series variances, time-series regression coefficients, etc.) and the ( )g θ  are the corresponding 

functions of our simulated time-series data. By simulating a sufficiently long time series we can 

eliminate simulation noise. We can thus regard the simulated moments as deterministic and 

continuously differentiable function of the unknown parameters ( )g θ . 

Now define the estimator 

ˆ arg min ( ( )) ( ( )) arg min ( ( )) ( ( ))T T T T T    θ θθ m θ W m θ μ g θ W μ g θ  (B2)

 
If we assume 

 Compactness: 0 int( )θ Θ  where Θ is a compact subset of LR . 

 Identification: [ ( )] [ ( )]T TE E  0 m θ μ g θ  implies 0θ θ  

 Limiting Behavior: A Central Limit Theorem implies that 0( ( )) ( , )
d

TT N μ g θ 0 S  

 Full Rank: ( ) ( ) θΓ θ D g θ  exists, has full rank L, and is a continuous function of . 

Then we will have 

0
ˆ ,

p

T θ θ  (B3)

 
i.e., our estimator will be consistent for the true population parameter of interest. 

 We now prove asymptotic normality. The first order condition for ˆ
Tθ

 

is  
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ˆ ˆ( ( )) ( ( )).T T T  0 Γ θ W μ g θ  (B4)

 
By the intermediate value theorem, this implies 

0 0

1
0 0

ˆ ˆ( ( )) ( ( ) ( )( ))

ˆ ˆ ˆ( ) [( ( )) ( )] ( ( )) ( ( )),

T T T T

T T T T TT T

    

    

0 Γ θ W μ g θ Γ θ θ θ

θ θ Γ θ WΓ θ Γ θ W μ g θ
 (B5)

 
for some Tθ  that is a convex combination of ˆ

Tθ

 

and 0.θ  Thus, since 0
ˆ

p

T θ θ  and since 

( ) ( ) θΓ θ D g θ  is continuous, Slutsky’s Theorem implies that 

1 1
0

ˆ( ) ( , ( ) ( ) ),
d

TT N     θ θ 0 ΓWΓ ΓWSWΓ ΓWΓ  (B6)

 
where 0( ) θΓ D g θ . It is easy to show that asymptotically efficient GMM estimates can be obtained 

by using 1ˆ W = S  where ˆ .
p

S S

 

Specifically, in that case, equation (B6) implies that 

1 1
0

ˆ( ) ( , ( ) ),
d

TT N   θ θ 0 Γ S Γ  (B7)

 which has the smallest asymptotic variance in the class of GMM estimators. Because 1ˆ S  is not 

always well-conditioned, in our estimation we use 1ˆ[ ( )]diag W = S . That is, we use a diagonal 

weighting matrix that weights each moment inversely to its estimated variance, so we solve 

2
, , ,1

ˆ arg min [( ( )) / ] .
M

T m DATA m SIM m DATAm
g 


 θθ θ  (B8)

  Our estimator for the variance of the SMM estimator takes the form 

1 1 1 1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ,TT T     V θ ΓWΓ ΓWSWΓ ΓWΓ  (B9)

 where ˆˆ ( )T θΓ D g θ  is a consistent estimator of Γ  and Ŝ  is a consistent estimator of S . 

Intuitively, a moment 0( )mg θ  is informative about a parameter l if the partial derivative of 

the moment with respect to the parameter is large in absolute magnitude—i.e., if 0( ) /ml m lg    θ

is large in magnitude. If we have lots of uninformative moments, then Γ WΓ  will be an ill-

conditioned matrix with lots of near-zero values. Consequently, 1( )Γ WΓ  will be very large in 

magnitude, implying that the standard errors on our SMM estimates will be very large—i.e., they 

will be estimated quite imprecisely. 

More formally, we follow Gentzkow and Shaprio (2013) and examine the elements of the 

influence matrix 1( ) Λ Γ WΓ Γ W  and 1/2 1 1/2[ ( )] ( ) [ ( )]SCALE diag diag  Λ V Γ WΓ Γ W S . The 
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elements of the influence matrix, , are simply the partial derivatives of the SMM estimator with 

respect to the sample moments, evaluated at the true parameter vector (see (B5)). The elements of 

the scaled influence matrix, SCALE , are a natural unit-free measure of identification influence: 

[ ]SCALE lmΛ  is the standard deviation response of parameter l to a one standard deviation increase in 

moment m. Thus, as Gentzkow and Shaprio (2013) argue, examining SCALE is a natural way to 

assess sources of identification in non-linear models source as ours.  

To obtain a consistent estimator for S, we use a system OLS approach (or seemingly-

unrelated regression framework) using Newey-West (1987) standard errors that account for the 

serial correlation of residuals to estimate the joint variance of the empirical moments. Specifically, 

we can interpret our moment conditions as consisting of a system of linear equations 

t t t y X β ε  (B10)

 
where 

1, 1, 1,1

2, 1, 2,2

, , ,

, , , .

t t t

t t t
t t t

M t M t M tM

y

y

y






        
                 
      
               

x 0 0 β

0 x 0 β
y X β ε

0 0 x β





     



 (B11)

 

The system OLS estimator for  is 

1

1 1

,
T T

OLS t t t t
t t



 

        
   
 b X X X y  (B12)

 and, letting  t t t OLS e y X b , the Newey-West (1987) style variance estimator for bOLS is 

 
1 1

1 1 1 1 1

1 ˆ 1
1

T jT T J T

t t t t t t t t t j t j t j t j t t t t
t t j t t

NW

j
T

J

T

T L

 

   
    

          


     
           
    S X X X e e X X e e X X e e X X X  (B13) 

We use (B12) allowing for serial correlation of residuals at up to J = 36 months. 

 

C: Model-Implied Impulse Response Functions 

 Figures A1, A2, and A3 show the model-implied impulse response functions allowing for 

competition neglect only, allowing for demand over-extrapolation only, and allowing for both 

biases. 
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Figure A1 
Model-Implied Impulse Response Functions: Competition Neglect Only 

This figure shows the model-implied impulse response functions following a one-time shock to 
demand. The figure corresponds to the estimates in column (1) of Table VI which allows for 
competition neglect ( < 1), but does not allow for demand over extrapolation (we impose f = 0). 
Following the demand shock at t = 1, the figures contrast the impulse response under rational 
expectations (imposing  = 1) with the impulse response anticipated by firms who suffer from 
competition neglect and the actual impulse respond under competition neglect. 
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Figure A2 
Model-Implied Impulse Response Functions: Demand Over-Extrapolation Only 

This figure shows the model-implied impulse response functions following a one-time shock to 
demand. The figure corresponds to the estimates in column (2) of Table VI which allows for 
demand over extrapolation (f > 0), but does not allow for competition neglect (we impose  = 1). 
Following the demand shock at t = 1, the figures contrast the impulse response under rational 
expectations (f = 0) with the impulse response anticipated by firms who suffer over-extrapolation 
demand and the actual impulse response under demand over-extrapolation. 

  



A-23 
 

Figure A3 
Model-Implied Impulse Response Functions: Both Biases 

This figure shows the model-implied impulse response functions following a one-time shock to 
demand. The figures corresponds to the estimates in column (3) of Table VI which allows for both 
competition neglect ( < 1) and demand over extrapolation (f > 0). Following the demand shock 
at t = 1, the figures contrast the impulse response under rational expectations (f = 0 and  = 1) 
with the impulse response anticipated by firms who suffer from both biases and the actual impulse 
response when firms suffer from both biases. 

 


