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A Appendix A: Derivation of Financial Sector Equilib-
rium Conditions

This appendix derives the equilibrium conditions associated with the financial sector. The first
subsection considers the conditions associated with the case where banker effort is observable.
We then consider the unobservable effort case.

A.1 Observable Effort

The Lagrangian representation of the banker’s problem in the observable effort rerpresentation
of the problem is:

max
e,d,Rdg ,R

d
b

Etλt+1

{
pt (et)

[
Rg
t+1 (Nt + dt)−Rd

g,t+1dt
]

+ (1− pt (et))
[
Rb
t+1 (Nt + dt)−Rd

b,t+1dt
]}
(29)
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+Et
{
µt+1

[
pt (et)R

d
g,t+1dt + (1− pt (et))R

d
b,t+1dt −Rtdt

]
+ νt+1

[
Rb
t+1 (Nt + dt)−Rd

b,t+1dt
]}

where µt+1 is the Lagrange multiplier on (1) and νt+1 ≥ 0 is the Lagrange multiplier on (2).
Note that the constraints must be satisfied in each period t + 1 state of nature, which is
indicated by the fact that the multipliers, µt+1 an νt+1, are contingent upon the realization of
period t+ 1 uncertainty. The first order conditions associated with the banker problem are:

e : 0 = Et{λt+1p
′
t (et)

[(
Rg
t+1 −Rb

t+1

)
(Nt + dt)−

(
Rd
g,t+1 −Rd

b,t+1

)
dt
]
− et

+µt+1p
′
t (et)

(
Rd
g,t+1 −Rd

b,t+1

)
dt}

d : 0 = Et{λt+1

[
pt (et)

(
Rg
t+1 −Rd

g,t+1

)
+ (1− pt (et))

(
Rb
t+1 −Rd

b,t+1

)]
+µt+1

[
pt (et)R

d
g,t+1 + (1− pt (et))R

d
b,t+1 −Rt

]
+ νt+1

(
Rb
t+1 −Rd

b,t+1

)
}

Rd
g : 0 = −λt+1pt (et) dt + µt+1pt (et) dt

Rd
b : 0 = −λt+1 (1− pt (et)) dt + µt+1 (1− pt (et)) dt − νt+1dt

µ : pt (et)R
d
g,t+1dt + (1− pt (et))R

d
b,t+1dt = Rtdt

ν : νt+1

[
Rb
t+1 (Nt + dt)−Rd

b,t+1dt
]

= 0, νt+1 ≥ 0, Rb
t+1 (Nt + dt)−Rd

b,t+1dt ≥ 0,

where “x : ”in the first column indicates the first order condition with respect to the variable,
x. In the Rd

g and R
d
b equations, we differentiate state by state. In the results reported above

the density of the state does not appear. This reflects our assumption that the density is
strictly positive over all states, so that we can divide through by that density. We make this
assumption throughout. Adding the Rd

g and R
d
b equations, we obtain:

µt+1 = λt+1 + νt+1. (30)

Substituting (30) back into the Rd
g equation, we find

νt+1 = 0,

so that the cash constraint is non-binding. Substituting the latter two results back into the
system of equations, they reduce to (4), (5) and (6) in the text. To see this, note that



µt+1 = λt+1 in the e equation results in a simple cancellation that implies (4). Equation (5) is
derived in a similarly simple way. Finally, equation (6) is simply the µ equation repeated.
Now suppose we impose a leverage restriction, (14). This only affects the d equation above,

since dt is the only choice variable in the leverage restriction. As a result, our findings, νt+1 = 0
and µt+1 = λt+1 are unaffected. That is, the cash constraint remains non-binding and the effort
equation remains as in (4). The only change implied by a binding leverage constraint is that
the 0 in the d equation is replaced by the multiplier on the leverage constraint.

A.2 Unobservable Effort

Given the indicated set of contracts, the Lagrangian representation of the banker’s problem
now is:

max
(et,dt,Rdg,t+1,Rdb,t+1)

Etλt+1

{
pt (et)

[
Rg
t+1 (Nt + dt)−Rd

g,t+1dt
]

+ (1− pt (et))
[
Rb
t+1 (Nt + dt)−Rd

b,t+1dt
]}
(31)
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[
pt (et)R

d
g,t+1dt + (1− pt (et))R

d
b,t+1dt −Rtdt

]
+ηt

(
et − Etλt+1p

′
t (et)

[(
Rg
t+1 −Rb

t+1

)
(Nt + dt)−

(
Rd
g,t+1 −Rd

b,t+1

)
dt
])

+Etνt+1

[
Rb
t+1 (Nt + dt)−Rd

b,t+1dt
]
.

where ηt is the Lagrange multiplier on (7). Note that this multiplier is not contingent on the
realization of the period t+1 state of nature since the constraint is on the effort level exerted by
the banker in t. To understand the solution to this problem, consider the first order necessary
conditions associated with the banker problem, (31):

e : Etλt+1p
′
t (et)

[(
Rg
t+1 −Rb

t+1

)
(Nt + dt)−

(
Rd
g,t+1 −Rd

b,t+1

)
dt
]

−et + Etµt+1p
′
t (et)

(
Rd
g,t+1 −Rd

b,t+1

)
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+ηt
(
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′′
t (et)

[(
Rg
t+1 −Rb

t+1

)
(Nt + dt)−

(
Rd
g,t+1 −Rd

b,t+1

)
dt
])

= 0

d : 0 = Etλt+1pt (et)
(
Rg
t+1 −Rd

g,t+1

)
+ Etλt+1 (1− pt (et))

(
Rb
t+1 −Rd

b,t+1

)
+Etµt+1

[
pt (et)R

d
g,t+1 + (1− pt (et))R

d
b,t+1 −Rt

]
−ηtEtλt+1p

′
t (et)

[(
Rg
t+1 −Rb

t+1

)
−
(
Rd
g,t+1 −Rd

b,t+1

)]
+ Etνt+1

(
Rb
t+1 −Rd

b,t+1

)
Rd
g : −λt+1pt (et) + µt+1pt (et) + ηtλt+1p

′
t (et) = 0

Rd
b : −λt+1 (1− pt (et)) + µt+1 (1− pt (et))− ηtλt+1p

′
t (et)− νt+1 = 0

µ : Rt = pt (et)R
d
g,t+1 + (1− pt (et))R

d
b,t+1

η : et = Etλt+1p
′
t (et)

[(
Rg
t+1 −Rb

t+1

)
(Nt + dt)−

(
Rd
g,t+1 −Rd

b,t+1

)
dt
]

ν : νt+1

[
Rb
t+1 (Nt + dt)−Rd

b,t+1dt
]

= 0, νt+1 ≥ 0,
[
Rb
t+1 (Nt + dt)−Rd

b,t+1dt
]
≥ 0.

Add the Rd
g and R

d
b equations, to obtain (30). To simplify the e equation, use (30) to substitute

out µt+1 :

e : Etλt+1p
′
t (et)

[(
Rg
t+1 −Rb

t+1

)
(Nt + dt)−

(
Rd
g,t+1 −Rd

b,t+1

)
dt
]
− et

+Et [λt+1 + νt+1] p′t (et)
(
Rd
g,t+1 −Rd

b,t+1

)
dt

+ηt
(
1− Etλt+1p
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t (et)

[(
Rg
t+1 −Rb

t+1

)
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(
Rd
g,t+1 −Rd

b,t+1

)
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])

= 0



or,

e : Etλt+1p
′
t (et)

(
Rg
t+1 −Rb

t+1

)
(Nt + dt)− et + Etνt+1p

′
t (et)

(
Rd
g,t+1 −Rd

b,t+1

)
dt

+ηt
(
1− Etλt+1p

′′
t (et)

[(
Rg
t+1 −Rb

t+1

)
(Nt + dt)−

(
Rd
g,t+1 −Rd

b,t+1

)
dt
])

= 0

Now, make use of p′′t = 0 and the η equation to substitute out for et :

e : Etλt+1p
′
t (et)

(
Rg
t+1 −Rb

t+1

)
(Nt + dt)− Etλt+1p

′
t (et)

[(
Rg
t+1 −Rb

t+1

)
(Nt + dt)−

(
Rd
g,t+1 −Rd

b,t+1

)
dt
]

+Etνt+1p
′
t (et)

(
Rd
g,t+1 −Rd

b,t+1

)
dt + ηt = 0

or,
e : Etλt+1p

′
t (et)

(
Rd
g,t+1 −Rd

b,t+1

)
dt + Etνt+1p

′
t (et)

(
Rd
g,t+1 −Rd

b,t+1

)
dt + ηt = 0

or,
e : Et [λt+1 + νt+1] p′t (et)

(
Rd
g,t+1 −Rd

b,t+1

)
dt + ηt = 0.

We now simplify the d equation. From the µ-condition, we delete the third term in d
equation and obtain

0 = Etλt+1pt (et)
(
Rg
t+1 −Rd

g,t+1

)
+ Etλt+1 (1− pt (et))

(
Rb
t+1 −Rd

b,t+1

)
−ηtEtλt+1p

′
t (et)

[(
Rg
t+1 −Rb

t+1

)
−
(
Rd
g,t+1 −Rd

b,t+1

)]
+ Etνt+1

(
Rb
t+1 −Rd

b,t+1

)
Use (30) to substitute out for µt+1 in the R

d
g condition:

νt+1pt (et) + ηtλt+1p
′
t (et) = 0

Substituting out ηt using R
d
g-condition,

−λt+1pt (et) + [λt+1 + νt+1] pt (et) + ηtλt+1p
′
t (et) = 0

νt+1pt (et) + ηtλt+1p
′
t (et) = 0 (32)

Note that this equation implies
ηt ≤ 0.

This is to be expected. The interpretation of this may be seen from (31). The sign of ηt
suggests that in the absence of the η constraint, i.e., if ηt = 0, then et would be set in a way
that makes et greater than the object on the right of the minus sign in the incentive constraint.
A negative value of ηt in the Lagrangian penalizes such a setting. But, we know from our
analysis of the observable effort case (the only difference in this case is that the incentive
constraint is absent), that et is greater than the object on the right of the minus sign in the η
constraint in (31) when that constraint is ignored. But, (32) has another notable implication.
Suppose, for simplicity, that from the point of view of t, there are two possible states of nature
in t+ 1, 1 and 2. Then,

ν1
t+1pt (et) + ηtλ

1
t+1p

′
t (et) = 0

ν2
t+1pt (et) + ηtλ

2
t+1p

′
t (et) = 0

We assume that λ1
t+1, λ

2
t+1, p

′
t (et) , pt (et) > 0. Suppose the cash constraint is not binding in

state of nature, 1, so that ν1
t+1 = 0. In that case, the first equation says that ηt = 0. But,

the second equation then implies ν2
t+1 = 0 too. Thus, if the cash constraint is not binding

in some state of nature for a particular date, then it must not be binding in the other state
either. If it is binding is one state, ν1

t+1 > 0, then ηt > 0 and it is binding in the other state.
Thus, it is either binding in all states at a particular date, or none. This is general. Note from



Rd
g-condition that

ηt = −νt+1pt (et) / [λt+1p
′
t (et)] ,

which implies that there exists no solution such that νt+1 = 0 for some states of nature
and νt+1 > 0 for others. Intuitively this is because a banker smooths ineffi ciency caused by
Rd
g,t+1 − Rd

b,t+1 > 0 state by state. Suppose Rb
t+1 is very low in one state and it is very high

in another. Then, the cash constraint is binding in the low state so that Rd
g,t+1 − Rd

b,t+1 > 0.
In the high state the banker sets Rd

b,t+1 high enough so that the cash constraint is binding and
Rd
g,t+1 − Rd

b,t+1 < 0. By doing this the banker minimizes Etλt+1p
′
t (et)

(
Rd
g,t+1 −Rd

b,t+1

)
≥ 0,

which is, loosely speaking, the measure of ineffi ciency.
Substituting out for ηt in the revised d equation:

0 = Etλt+1pt (et)
(
Rg
t+1 −Rd

g,t+1

)
+ Etλt+1 (1− pt (et))

(
Rb
t+1 −Rd

b,t+1

)
+Etνt+1pt (et)

[(
Rg
t+1 −Rb

t+1

)
−
(
Rd
g,t+1 −Rd

b,t+1

)]
+ Etνt+1

(
Rb
t+1 −Rd

b,t+1

)
or,

0 = Etλt+1

[
pt (et)

(
Rg
t+1 −Rd

g,t+1

)
+ (1− pt (et))

(
Rb
t+1 −Rd

b,t+1

)]
+Etνt+1

[
pt (et)

(
Rg
t+1 −Rd

g,t+1

)
+ (1− pt (et))

(
Rb
t+1 −Rd

b,t+1

)]
or

0 = Et (λt+1 + νt+1)
[
pt (et)

(
Rg
t+1 −Rd

g,t+1

)
+ (1− pt (et))

(
Rb
t+1 −Rd

b,t+1

)]
.

Then, using the µ-condition,

0 = Et (λt+1 + νt+1)
[
pt (et)R

g
t+1 + (1− pt (et))R

b
t+1 −Rt

]
.

Finally, we use (30) to substitute out for µt+1 in the R
d
g equation, to obtain:

Rd
g : νt+1pt (et) + ηtλt+1p

′
t (et) = 0.

The optimization conditions derived here are summarized in (8).
To gain intuition into this multiplier, consider the case, νt+1 = 0, so that the cash constraint

is not binding and the Rd
g condition implies ηt = 0. Since λt+1 + νt+1 > 0 the e-condition then

implies that Rd
g,t+1 = Rd

b,t+1 can be the solution (as long as it does not make the cash constraint
binding). Combining this with the µ-condition then implies that

Rd
g,t+1 = Rd

b,t+1 = Rt (33)

can be the solution. It then follows from the η-condition that:

et = Etλt+1p
′
t (et)

[(
Rg
t+1 −Rb

t+1

)
(Nt + dt)

]
, (34)

so that banker effort level is effi cient.
Now consider the case, νt+1 > 0 for all states of nature. Then, the Rd

g-condition implies
ηt < 0 and the e-condition, after substituting out νt+1 using the the Rd

g-condition, implies

Etλt+1p
′
t (et)

(
Rd
g,t+1 −Rd

b,t+1

)
dt = − ηt

1− ηtp
′
t(et)

pt(et)

> 0.

The e-condition then shows that banker effort is suboptimal. By continuity, when νt+1 is large
the ineffi ciency of the banking system is great and when it is small, there ineffi ciency is smaller.
We think of a ‘crisis time’as one in which νt+1 is large.



Given our constraints, we suspect that when the cash constraint is always binding, νt+1 > 0,
all state contingent deposit returns Rd

g,t+1, R
d
b,t+1,are pinned down. To see why, consider the

case in which there are two aggregate states possible in period t + 1, given period t. Denote
these by 1 and 2 and suppose they have probability, πt and 1−πt, respectively. The µ equations
are:

Rt = pt (et)R
d,1
g,t+1 + (1− pt (et))R

d,1
b,t+1

Rt = pt (et)R
d,2
g,t+1 + (1− pt (et))R

d,2
b,t+1

and the ν equations are

Rb,1
t+1 (Nt + dt)−Rd,1

b,t+1dt = 0

Rb,2
t+1 (Nt + dt)−Rd,2

b,t+1dt = 0

Given the time t realization of variables, this represents four equations in four unknowns.
In general, for given Rt, pt (et) these variables are pinned down. If there are more states of
nature, then these equations represent restrictions on the deposit returns. Either way, the state
contingency in the returns does not appear to contribute directly to multiplicity of equilibria,
at least when the case constraint is always binding. As a practical matter, we can solve the
model assuming the cash constraint always binds. We can then inspect the multiplier and
verify that it is always positive. If ever it is negative that means that the constraint as an
inequality is in fact not binding.
Consider the issue of the relative magnitude of Rd

b,+1 and R
d
g,+1.We suspect that it will not

be true across all states of nature that Rd
b,t+1 ≤ Rd

g,t+1. Consider a simple example. Suppose
there is an aggregate state where Rb

t+1 = 0. In that state, it must be that Rd
b,t+1 = 0 too. In

such a state, assuming Rt > 0, it must be that Rd
g,t+1 > Rd

b,t+1. By itself, this spread induces a
substantial ineffi ciency in the e decision (see the η equation). But, the spread affects the choice
of e only by its expected value. If that spread is very large in some state then it does not induce
a large ineffi ciency if it is suffi ciently small in another state. We might even imagine that it
could be negative in another state, Rd

b,t+1 > Rd
g,t+1. In this case, creditors in effect subsidize

bankers that make positive profits and tax the ones that lose. This obviously has a big positive
incentive effect on e. This possibility should not be a problem for our maintained assumption
that the cash constraint is non-binding in the g state. To see this, suppose that it is binding
in the b state:

Rb
t+1 (Nt + dt)−Rd

b,t+1dt = 0.

By construction, Rg
t+1 > Rb

t+1 in all aggregate states. also, in the scenario we are discussing,
Rd
g,t+1 < Rd

b,t+1. Both guarantee that the cash constraint is not binding in the g state.
An interesting feature of the model is that it implies a non-trivial cross-sectional variance

on the returns of banks. In any given period t + 1 state of nature, the cross section mean of
bank returns on equity is:

Rm
t+1 = pt (et)

[
Rg
t+1 (Nt + dt)−Rd

g,t+1dt

Nt

]
+ (1− pt (et))

[
Rb
t+1 (Nt + dt)−Rd

b,t+1dt

Nt

]
.

To determine the cross sectional standard deviation of bank equity returns, note that in the
cross section, in any aggregate state, pt (et) banks each earn

Rg
t+1 (Nt + dt)−Rd

g,t+1dt

Nt



return on equity. Similarly, 1− pt (et) banks earn a return on equity equal to

Rb
t+1 (Nt + dt)−Rd

b,t+1dt

Nt

.

Recall that if a random variable has a binomial distribution and takes on the value xh with
probability p and xl with probability 1 − p, then the variance of that random variable is
p (1− p)

(
xh − xl

)2
. So, the period t cross-sectional standard deviation of bank returns is:

sdt+1 = [pt (et) (1− pt (et))]
1/2

[
Rg
t+1 (Nt + dt)−Rd

g,t+1dt

Nt

−
Rb
t+1 (Nt + dt)−Rd

b,t+1dt

Nt

]

= [pt (et) (1− pt (et))]
1/2 R

g
t+1 (Nt + dt)−Rd

g,t+1dt

Nt

,

taking into account our assumption that the cash constraint is binding for bad banks. Note
that pt (et) > 1/2 then the cross sectional standard deviation is decreasing in et.

B Appendix B: Scaling and Miscellaneous Variables

To solve our model, we require that the variables be stationary. To this end, we adopt a
particular scaling of the variables. Because our model satisfies suffi cient conditions for bal-
anced growth, when the equilibrium conditions of the model are written in terms of the scaled
variables, only the growth rates and not the levels of the stationary shocks appear. In this
appendix we describe the scaling of the model that is adopted. In addition, we describe the
mapping from the variables in the scaled model to the variables measured in the data.
Let

qt = ΥtPk′,t
Pt

, yz,t =
Yt
z+
t

, it =
It

z+
t Υt

, w̃t ≡
Wt

z+
t Pt

, pI,t ≡
1

ΥtµΥ,t

, PI,t =
Pt

ΥtµΥ,t

k̄t =
K̄t

z+
t−1Υt−1

, rkt = Υtr̃kt , µ
∗
z,t =

z+
t

z+
t−1

, ct =
Ct
z+
t

, λz,t = λtz
∗
tPt

where r̃kt Pt denotes the nominal rental rate on capital. Also, r̃
k
t denotes the real, unscaled,

rental rate of capital. We do not work with this variable. The rate of inflation in the nominal
wage rate is:

πw,t ≡
Wt

Wt−1

=
w̃tµ

∗
z,tπt

w̃t−1

.

Consider gdp growth, according to the model.

Y gdp
t

z+
t

≡ yt = ct +
it
µΥ,t

+ gt,

or,
Y gdp
t = ytz

+
t ,

so that

∆ log Y gdp
t = log Y gdp

t − log Y gdp
t−1 = log (yt)− log (yt−1) + log

(
z+
t

)
− log z+

t−1

= log (yt)− log (yt−1) + log µ∗z,t



Let Nt denote period t nominal net worth, so that

nt =
Nt

Ptz
+
t

.

Then,

∆ log
Nt

Pt
= log nt − log nt−1 + log µ∗z,t.

Another variable is investment. There is an issue about what units to measure investment
in. Investment times its relative price is given by:

invt ≡
It

ΥtµΥ,t

=
itz

+
t Υt

ΥtµΥ,t

=
itz

+
t

µΥ,t

,

so that:

∆ log invt ≡ log invt − log invt−1 = log it − log it−1 + log µ∗z,t −
(
log µΥ,t − log µΥ,t−1

)
.

The investment goods relative to consumption goods is given by

pI,t ≡
1

ΥtµΥ,t

,

so that

∆ log pI,t = −t log Υ + (t− 1) log Υ− log µΥ,t + log µΥ,t−1

= − log Υ− log µΥ,t + log µΥ,t−1.

Also,
∆ logCt = log ct − log ct−1 + log µ∗z,t.

The growth rate of the real wage is:

∆ log
Wt

Pt
= log w̃t − log w̃t−1 + log µ∗z,t

C Appendix C: Dynamic Equations

Here, we display all the dynamic equilibrium conditions associated with the model.

C.1 Prices

The equations pertaining to prices are:

(1)p∗t −

(1− ξp)(Kp,t

Fp,t

) λf
1−λf

+ ξp

(
π̃t
πt
p∗t−1

) λf
1−λf


1−λf
λf

= 0 (35)

and

(2)Et

{
ζc,tλz,tyz,t +

(
π̃t+1

πt+1

) 1
1−λf

βξpFp,t+1 − Fp,t

}
= 0, (36)



where λz,t denotes λtz∗tPt. Also,

(3)ζc,tλz,tλfyz,tst + βξp

(
π̃t+1

πt+1

) λf
1−λf

Kp,t+1 −Kp,t = 0. (37)

Note that both these equations involve Fp,t. This reflects that a lot of equations have been
substituted out. In particular, we have

(4)Fp,t

1− ξp
(
π̃t
πt

) 1
1−λf

1− ξp


1−λf

= Kp,t, p̃t =
Kp,t

Fp,t
,

where p̃t is the real price set by price-optimizing firms in period t. This is not a variable of
direct interest in the analysis.

C.2 Wages

The demand for labor is the solution to the following problem:

maxWt

=lt︷ ︸︸ ︷[∫ 1

0

(ht,i)
1
λw di

]λw
−
∫ 1

0

Wt,iht,idi,

where Wt,i is the wage rate of i−type workers and Wt is the wage rate for homogeneous labor,
lt. The first order condition is:

ht,i = lt

(
Wt

Wt,i

) λw
λw−1

.

The wages of non-optimizing unions evolve as follows:

Wj,t = π̃w,t
(
µz∗,t

)ιµ
(µz∗)

1−ιµWj,t−1, π̃w,t ≡ (π∗t )
ιw1 (πt−1)ιw2 π̄1−ιw1−ιw2 , (38)

Nominal wage growth, πw,t, is:

πw,t =
w̃tµ

∗
z,tπt

w̃t−1

,

where w̃t denotes the scaled wage rate:

w̃t ≡
Wt

z∗tPt
.

The labor input variable that we treat as observed is the sum over the various different
types of labor:

ht =

∫ 1

0

hitdi

= ltW
λw
λw−1
t

∫ 1

0

(Wt,i)
λw

1−λw di

= ltW
λw
λw−1
t (W ∗

t )
λw

1−λw ,



where

W ∗
t ≡

[∫ 1

0

(Wt,i)
λw

1−λw di

] 1−λw
λw

=

[
(1− ξw) W̃t +

∫
ξw monopolists that do not reoptimize

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµWi,t−1

) λw
1−λw di

] 1−λw
λw

=

[
(1− ξw) W̃t + ξw

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµW ∗
t−1

) λw
1−λw

] 1−λw
λw

.

Let w∗t ≡ W ∗
t /Wt, and use linear homogeneity:

w∗t =

(1− ξw)
W̃t

Wt

+ ξw

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµ

πw,t
w∗t−1

) λw
1−λw


1−λw
λw

,

W̃t is the nominal wage set by the 1− ξw wage optimizers in the current period. Rewriting,

w∗t = [(1− ξw)w
λw

1−λw
t + ξw

(
π̃w,t

(
µ∗z,t
)ιµ

(µ∗z)
1−ιµ

πwt
w∗t−1

) λw
1−λw

]
1−λw
λw , (39)

where

wt ≡
W̃t

Wt

. (40)

We conclude:
ht = lt (w∗t )

λw
1−λw . (41)

For purposes of evaluating aggregate utility, it is also convenient to have an expression for
the following: ∫ 1

0

h1+σL
it di

= l1+σL
t W

−λw(1+σL)
1−λw

t

∫ 1

0

(Wt,i)
λw(1+σL)
1−λw di

= l1+σL
t W

−λw(1+σL)
1−λw

t Ẅ
λw(1+σL)
1−λw

t ,

where

Ẅt ≡
[∫ 1

0

(Wt,i)
λw(1+σL)
1−λw di

] 1−λw
λw(1+σL)

.

Then,

Ẅt =

[∫ 1

0

(Wt,i)
λw(1+σL)
1−λw di

] 1−λw
λw(1+σL)

=

[
(1− ξw)

(
W̃t

)λw(1+σL)
1−λw

+

∫
ξw that change

(Wt,i)
λw(1+σL)
1−λw di

] 1−λw
λw(1+σL)

=

[
(1− ξw)

(
W̃t

)λw(1+σL)
1−λw

+ ξw

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµ Ẅt−1

)λw(1+σL)
1−λw

] 1−λw
λw(1+σL)

.



Divide by Wt and make use of the linear homogeneity of the above expression:

Ẅt

Wt

=

(1− ξw)

(
W̃t

Wt

)λw(1+σL)
1−λw

+ ξw

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµ

πw,t

Ẅt−1

Wt−1

)λw(1+σL)
1−λw


1−λw

λw(1+σL)

Define

ẅt =
Ẅt

Wt

,

so that

ẅt =

(1− ξw) (wt)
λw(1+σL)
1−λw + ξw

(
π̃w,t

(
µz∗,t

)ιµ
(µz∗)

1−ιµ

πw,t
ẅt−1

)λw(1+σL)
1−λw


1−λw

λw(1+σL)

, (42)

using (40). We conclude ∫ 1

0

h1+σL
it di =

[
lt (ẅt)

λw
1−λw

](1+σL)

(43)

=

[
ht

(
ẅt
w∗t

) λw
1−λw

](1+σL)

.

using (41).
The optimality conditions associated with wage-setting are characterized by:

(5)Et{ζc,tλz,t
(w∗t )

λw
λw−1 ht

(
1− τ lt

)
λw

+βξw (µz∗)
1−ιµ
1−λw Et

(
µz∗,t+1

) ιµ
1−λw−1

(
1

πw,t+1

) λw
1−λw π̃

1
1−λw
w,t+1

πt+1

Fw,t+1−Fw,t} = 0

(44)
and

(6) Et{ζc,tζt
[
(w∗t )

λw
λw−1 ht

]1+σL
+βξw

(
π̃w,t+1

(
µ∗z,t+1

)ιµ
(µ∗z)

1−ιµ

πwt+1

) λw
1−λw (1+σL)

Kw,t+1−Kw,t} = 0.

(7)
1

ψL

1− ξw
(
π̃w,t
πw,t

(µz∗)
1−ιµ (µz∗,t)ιµ) 1

1−λw

1− ξw


1−λw(1+σL)

w̃tFw,t −Kw,t = 0

Optimization by households implies:

wt =

[
ψL
w̃t

Kw,t

Fw,t

] 1−λw
1−λw(1+σL)

,

so that, using (39):

w∗t =

(1− ξw)

[
ψL
w̃t

Kw,t

Fw,t

] λw
1−λw(1+σL)

+ ξw

(
π̃w,t

(
µ∗z,t
)ιµ

(µ∗z)
1−ιµ

πwt
w∗t−1

) λw
1−λw


1−λw
λw

.



We can replace Kw,t/Fw,t with the expression implied by (7) above:

(8) w∗t =

(1− ξw)

1− ξw
(
π̃w,t
πw,t

(µz∗)
1−ιµ (µz∗,t)ιµ) 1

1−λw

1− ξw


λw

+ ξw

(
π̃w,t

(
µ∗z,t
)ιµ

(µ∗z)
1−ιµ

πwt
w∗t−1

) λw
1−λw


1−λw
λw

C.3 Capital Utilization, Marginal Cost, Return on Capital, Invest-
ment, Monetary Policy

The first order necessary condition associated with the capital utilization decision is:

1

Υt
a′ (ut) = r̃kt ,

or,
a′ (ut) = Υtr̃kt = rkt ,

after scaling. Making use of our assumed utilization cost function, this reduces to:

(9) rkt = rk exp (σa [ut − 1]) ,

where

a (ut) =
rk

σa
[exp(σa [ut − 1])− 1] .

Also, rk denotes the steady state value of rkt . The above restriction on the a (ut) function
implies that u = 1 in a steady state. As a result, the steady state is independent of the capital
adjustment costs.
Marginal cost is given by:

(10)rkt =
αεt[

1 + ψk,tRt

] (Υµ∗z,tLt (w∗t )
λw
λw−1

utk̄t

)1−α

st (45)

w̃t =
(1− α) εt[
1 + ψl,tRt

] (Υµ∗z,tLt (w∗t )
λw
λw−1

utk̄t

)−α
st,

where ψk,t and ψl,t denote the fraction of the capital services and labor bills, respectively,
that must be financed in advance. Combining the last two equations, we obtain the familiar
expression for marginal cost:

(11) st =
1

εt

(
rkt
[
1 + ψk,tRt

]
α

)α(
w̃t
[
1 + ψl,tRt

]
1− α

)1−α

, (46)

where ψk,t = ψl,t = 0. Resource constraint:

(12)a(ut)
k̄t

Υµ∗z,t
+ gt + ct +

it
µΥ,t

= yz,t (47)



where gt is an exogenous stochastic process and

(13)k̄t+1 =

relevant only for financial friction model, drop in CEE version︷ ︸︸ ︷[
pt (et) e

gt + (1− pt (et)) e
bt
] {

(1− δ) 1

µ∗z,tΥ
k̄t +

[
1− S

(
ζ i,t itµ

∗
z,tΥ

it−1

)]
it

}
,

(48)
where it is investment scaled by z∗t Υ

t.
Equation defining the nominal non-state contingent rate of interest:

(14)Et{β
1

πt+1µ∗z,t+1

ζc,t+1λz,t+1Rt − ζc,tλz,t} = 0 (49)

The derivative of utility with respect to consumption is,

(15)Et

[
ζc,tλz,t −

µ∗z,tζc,t
ctµ∗z,t − bct−1

+ bβ
ζc,t+1

ct+1µ∗z,t+1 − bct

]
= 0, (50)

where ct denotes consumption scaled by z∗t . The following capital first order first order condi-
tion is an equilibrium condition in CEE, but not in our model with financial frictions because
in that model households do not accumulate capital:

(16)Et

{
−ζc,tλzt +

β

πt+1µ∗z,t+1

ζc,t+1λzt+1R
k
t+1

}
= 0. (51)

In (51), Rk
t+1 denotes the benchmark rate of return on capital:

(17) Rk
t =

utr
k
t − a(ut) + (1− δ)qt

Υqt−1

πt

where qt denotes the scaled market price of capital, QK̄′,t :

qt = ΥtQK̄′,t

Pt
.

Equation (17) holds in our financial friction model, as well as in CEE. The investment first
order condition, (27)

(18) Et{ζc,tλztqt
[
1− S(

ζ i,tµ
∗
z,tΥit

it−1

)− S ′(
ζ i,tµ

∗
z,tΥit

it−1

)
ζ i,tµ

∗
z,tΥit

it−1

]
(52)

−
ζc,tλzt

µΥ,t

+
βλzt+1ζc,t+1ζ i,t+1qt+1

µ∗z,t+1Υ
S ′(

ζ i,t+1µ
∗
z,t+1Υit+1

it
)

(
µ∗z,t+1Υit+1

it

)2

} = 0,

where it is scaled (by z∗t Υ
t) investment. The scaled representation of aggregagte output is:

(19) yz,t ≡
Yt
z∗t

= (p∗t )
λf
λf−1

[
εt

(
utk̄t
µ∗z,tΥ

)α (
(w∗t )

λw
λw−1 ht

)1−α
− φ
]

The monetary policy rule:

(20) log (1 +Rt) = (1− ρ̃) log (1 +R) + ρ̃ log (1 +Rt−1) (53)

+
1− ρ̃
1 +R

[
ãpπ log

πt+1

π∗t
+ ãy

1

4
log

yt
y

]
+ xpt ,



where xpt is an iid monetary policy shock and yt denotes scaled GDP:

(21) yt = gt + ct +
it
µΥ,t

.

It’s important not to confuse yt and Yt. The former is scaled GDP while the latter is unscaled
gross output. Scaled gross output and scaled GDP are the same in steady state but different
in the dynamics because ut is potentially different from unity then.

C.4 Conditions Pertaining to Financial Frictions

First, consider the equilibrium conditions associated with the financial friction model with
unobserved effort. Consider the following scaling:

d̃t =
dt
z∗tPt

, λz,t+1 = λt+1z
∗
t+1Pt+1, vz,t+1 = νt+1z

∗
t+1Pt+1, Ñt =

Nt

z∗tPt
, T̃t =

Tt
z∗tPt

Consider the e equation:

e : Et (λt+1 + νt+1) p′t (et)
(
Rd
g,t+1 −Rd

b,t+1

)
dt + ηt = 0

or,

e : Et (λz,t+1 + νz,t+1)
1

z∗t+1Pt+1

p′t (et)
(
Rd
g,t+1 −Rd

b,t+1

)
z∗tPtd̃t + ηt = 0

or,

e : Et (λz,t+1 + νz,t+1)
1

µz∗,t+1πt+1

p′t (et)
(
Rd
g,t+1 −Rd

b,t+1

)
d̃t + ηt = 0.

Now consider the d equation:

d : 0 = Et (λz,t+1 + νz,t+1)
1

z∗t+1Pt+1

[
pt (et)R

g
t+1 + (1− pt (et))R

b
t+1 −Rt

]
Multiply this equation by z∗tPt to obtain:

d : 0 = Et (λz,t+1 + νz,t+1)
1

µz∗,t+1πt+1

[
pt (et)R

g
t+1 + (1− pt (et))R

b
t+1 −Rt

]
In the case of the Rd

g equation, we can simply multiply by z
∗
t+1Pt+1 :

Rd
g : νz,t+1pt (et) + ηtλz,t+1p

′
t (et) = 0.

Equation µ requires no adjustment:

µ : Rt = pt (et)R
d
g,t+1 + (1− pt (et))R

d
b,t+1

Next, consider equation η :

η : et = Etλz,t+1
1

µz∗,t+1πt+1

p′t (et)
[(
Rg
t+1 −Rb

t+1

) (
Ñt + d̃t

)
−
(
Rd
g,t+1 −Rd

b,t+1

)
d̃t

]
The ν equation is:

ν : Rb
t+1

(
Ñt + d̃t

)
−Rd

b,t+1d̃t = 0,



The law of motion for net worth is:

Nt+1 = γt+1

{
pt (et)

[
Rg
t+1 (Nt + dt)−Rd

g,t+1dt
]

+ (1− pt (et))
[
Rb
t+1 (Nt + dt)−Rd

b,t+1dt
]}

+Tt+1

Divide by z∗t+1Pt+1

Ñt+1 =
γt+1

µz∗,t+1πt+1

{
pt (et)

[
Rg
t+1

(
Ñt + d̃t

)
−Rd

g,t+1d̃t

]
+ (1− pt (et))

[
Rb
t+1

(
Ñt + d̃t

)
−Rd

b,t+1d̃t

]}
+T̃t+1,

or,

Ñt+1 =
γt+1

µz∗,t+1

{
pt (et)

Rg
t+1

πt+1

(
Ñt + d̃t

)
+ (1− pt (et))

Rb
t+1

πt+1

(
Ñt + d̃t

)
− Rt

πt+1

d̃t

}
+ T̃t+1

We also require equations to define the returns of good and bad entrepreneurs:

Rg
t+1 = egtRk

t+1,

Rb
t+1 = ebtRk

t+1

Finally, we have the market clearing condition for capital:

Pk′,tK̃t+1 = Nt + dt,

If we multiply both sides of this expression by pt (et) e
gt + (1− pt (et)) e

bt , we obtain:

Pk′,tK̄t+1 =
[
pt (et) e

gt + (1− pt (et)) e
bt
]

[Nt + dt] ,

or
qtPt
Υt

z+
t Υtk̄t+1

z∗tPt
=
[
pt (et) e

gt + (1− pt (et)) e
bt
] [
Ñt + d̃t

]
,

or
qtk̄t+1 =

[
pt (et) e

gt + (1− pt (et)) e
bt
] [
Ñt + d̃t

]
,

Collecting the equations for simplicity,

e : Et (λz,t+1 + νz,t+1)
1

µz∗,t+1πt+1

p′t (et)
(
Rd
g,t+1 −Rd

b,t+1

)
d̃t + ηt = 0

d : 0 = Et (λz,t+1 + νz,t+1)
1

µz∗,t+1πt+1

[
pt (et)R

g
t+1 + (1− pt (et))R

b
t+1 −Rt

]
Rd
g : νz,t+1pt (et) + ηtλz,t+1p

′
t (et) = 0

µ : Rt = pt (et)R
d
g,t+1 + (1− pt (et))R

d
b,t+1

η : et = Etλz,t+1
1

µz∗,t+1πt+1

p′t (et)
[(
Rg
t+1 −Rb

t+1

) (
Ñt + d̃t

)
−
(
Rd
g,t+1 −Rd

b,t+1

)
d̃t

]
ν : Rb

t+1

(
Ñt + d̃t

)
−Rd

b,t+1d̃t = 0

Ñt+1 =
γt+1

µz∗,t+1πt+1

{
pt (et)

[
Rg
t+1

(
Ñt + d̃t

)
−Rd

g,t+1d̃t

]
+ (1− pt (et))

[
Rb
t+1

(
Ñt + d̃t

)
−Rd

b,t+1d̃t

]}
+ T̃t+1

qtk̄t+1 =
[
pt (et) e

gt + (1− pt (et)) e
bt
] [
Ñt + d̃t

]
Rg
t+1 = egtRk

t+1

Rb
t+1 = ebtRk

t+1

To go from the CEE model to the model with financial frictions, we drop equation (16)



(and modify the capital accumulation equation, (13)) and we add the above 10 equations. So,
there is a net addition of 9 equations. The additional 9 variables are

Rg
t+1, R

b
t+1, d̃t, Ñt, R

d
g,t+1, R

d
b,t+1, et, νz,t+1, ηt.

C.5 Social Welfare Function

We now turn to developing an expression for the representative household’s utility function

Utilt = ζc,t

{
log(z+

t ct − bz+
t−1ct−1)− ψL

∫ 1

0

h1+σL
it

1 + σL
di

}
= ζc,t

{
log

[
z+
t (ct − b

z+
t−1

z+
t

ct−1)

]
− ψL

∫ 1

0

h1+σL
it

1 + σL
di

}
= ζc,t

{
log(ct −

b

µ∗z,t
ct−1)− ψL

1 + σL

∫ 1

0

h1+σL
it di

}
,

apart from a constant term. Using (43):

ψL
1 + σL

∫ 1

0

h1+σL
it di =

ψL
1 + σL

[
ht

(
ẅt
w∗t

) λw
1−λw

](1+σL)

,

so that

Utilt = ζc,t

log(ct −
b

µ∗z,t
ct−1)− ψL

1 + σL

[
ht

(
ẅt
w∗t

) λw
1−λw

](1+σL)
 ,

where ẅt is defined in (42) and w∗t is defined in (8). Both these variables are unity in steady
state.

D Appendix D: Calculating Steady State

Here, we discuss algorithms for computing the steady state of three versions of our model. The
first three sections describe the equations of the model. The last three sections describe the
algorithms.

D.1 Price and Wage Equations

This section pertains to equations (1)-(8) of the dynamical system in Appendix C. These
equations are trivial in the case, π = π̄. Equation (35) in steady state, is:

p∗ =


(
1− ξp

)(1−ξp( π̃π )
1

1−λf

1−ξp

)λf

1− ξp
(
π̃
π

) λf
1−λf



1−λf
λf

.



Note that, if π = π̄ then p∗ = 1. Equation (36):

Fp =

λz (p∗)
λf
λf−1

[(
k

µ∗zΥ

)α (
(w∗)

λw
λw−1 h

)1−α
− φ
]

1−
(
π̃
π

) 1
1−λf βξp

,

assuming (
π̃

π

) 1
1−λf

βξp < 1.

Equation (37) in steady state is:

Fp =

λzλf (p∗)
λf
λf−1

[(
k
µz

)α (
(w∗)

λw
λw−1 h

)1−α
− φ
]
s[

1−ξp( π̃π )
1

1−λf

1−ξp

]1−λf [
1− βξp

(
π̃
π

) λf
1−λf

]
Equating the preceding two equations:

s =
1

λf

[
1−ξp( π̃π )

1
1−λf

1−ξp

]1−λf [
1− βξp

(
π̃
π

) λf
1−λf

]
1−

(
π̃
π

) 1
1−λf βξp

. (54)

In the case, π = π̄, s = 1/λf . Equation (44) in steady state is:

Fw =
λz

(w∗)
λw
λw−1 h
λw

1− βξwπ̃
1

1−λw
w

( 1π )
λw

1−λw

π

,

as long as the condition,

βξwπ̃
1

1−λw
w

(
1
π

) λw
1−λw

π
< 1,

is satisfied. Also
π̃w = (π)ιw,2 π̄1−ιw,2 .

Equation (??) is

Fw =
ψL

[
(w∗)

λw
λw−1 h

]1+σL

[
1−ξw( π̃wπ )

1
1−λw

1−ξw

]1−λw(1+σL)

w̃
[
1− βξw

(
π̃w
π

) λw
1−λw (1+σL)

] ,

as long as

βξw

(
π̃w
π

) λw
1−λw (1+σL)

< 1.

Equating the two expressions for Fw, we obtain:

w̃ = Wλw
ψLh

σL

λz
, (55)



where

W = (w∗)
λw
λw−1σL

1− ξw
(
π̃w
π

) 1
1−λw

1− ξw

λw(1+σL)−1

1− βξw
(
π̃w
π

) 1
1−λw

1− βξw
(
π̃w
π

) λw
1−λw (1+σL)

, (56)

which is unity in the case π = π̄. In steady state, (??) reduces to:

w∗ =


(1− ξw)

(
1−ξw( π̃wπ )

1
1−λw

1−ξw

)λw

1− ξw
(
π̃w
π

) λw
1−λw



1−λw
λw

, (57)

which is unity when π = π̄. According to the wage equation, the wage is a markup, Wλw, over
the household’s marginal cost. Note that the magnitude of the markup depends on the degree
of wage distortions in the steady state. These will be important to the extent that π̃w 6= πw.
In the case π = π̄, we have

π̃w, p
∗, w∗ = 1, w̃ = λw

ψLh
σL

λz
, s =

1

λf
, (58)

in addition to Fp, Fw, Kp, Kw which do not get used in the subsequent equations.

D.2 Other Non-Financial Equations

The marginal cost equation, (45) implies:

rk =
αε

[1 + ψkR]

(
Υµ∗zh (w∗)

λw
λw−1

k̄

)1−α

s, (59)

where w∗ is determined by (57). In steady state, the capital accumulation equation, (48), is[
1

p (e) eg + (1− p (e)) eb
− (1− δ) 1

µ∗zΥ

]
k̄ = i, (60)

or, [
1− (1− δ) 1

µ∗zΥ

]
k̄ = i, (61)

using (??). In steady state, the equation for the nominal rate of interest, (49), reduces to:

R =
πµ∗z
β
. (62)

In steady state, the marginal utility of consumption, (50), is

λz =
1

c

µ∗z − bβ
µ∗z − b

. (63)

Finally, the euler equation for investment, (52), reduces to

q = 1.



Also, equations (17) and (19) in the dynamic system reduce to:

(19) yz = εt

(
k̄

µ∗zΥ

)α
h1−α
t − φ

(17) Rk =
rk + 1− δ

Υ
π (64)

We compute φ to guarantee that firm profits are zero in a steady state where π = π̄. Let h
and k̄ denote hours worked and capital in such a steady state. Also, let F denote gross output
of the final good in that steady state. Write sales of final good firm as F − φ. Real marginal
cost in this steady state is s = 1/λf . Since this is a constant, the total costs of the firm are sF.
Zero profits requires sF = F − φ. Thus, φ = (1− s)F = F (1− 1/λf ), or,

(7)φ =

(
k̄

µ∗zΥ

)α
(h)1−α

(
1− 1

λf

)
. (65)

The steady state version of the resource constraint, (??), is:

(8)c+ g +
i

µΥ

=

(
k̄

µ∗zΥ

)α
h1−α − φ, (66)

where p∗ = w∗ = 1. The steady state real wage can be solved from (45):

(9)w̃ = s (1− α)

[
Υµz∗h

k̄

]−α
. (67)

The steady state labor supply equation, (55), is:

(10)h =

[
λz

WλwψL
w̃

] 1
σL

, (68)

where W = 1 when π = π̄.

D.3 Financial Sector Equations

In steady state, the equilibrium conditions pertaining to financial friction are

e : (λz + νz)
b̄

µz∗π

(
Rd
g −Rd

b

)
d̃+ η = 0,

d : 0 =
[
p (e) eg + (1− p (e)) eb

]
Rk −R,

Rd
g : νzp (e) + ηλz b̄ = 0,

µ : R = p (e)Rd
g + (1− p (e))Rd

b ,

η : e =
λz b̄

µz∗π

[(
eg − eb

)
Rk
(
Ñ + d̃

)
−
(
Rd
g −Rd

b

)
d̃
]
,

ν : ebRk
(
Ñ + d̃

)
−Rd

b d̃ = 0,

Ñ =
γ

µz∗π
RÑ + T̃ ,

qk̄ =
[
p (e) eg + (1− p (e)) eb

] (
Ñ + d̃

)
,



where b̄ = p′ (e) and we have substituted out Rg and Rb by egRk and ebRk respectively. We
need

γ < β,

for the net worth accumulation equation to make sense (i.e., have a steady state). Those 8
equations are solved for 8 variables: d̃, Ñ , Rd

g, R
d
b , e, νz, η, R

k, conditional on values for λz and
k̄ and some calibration information. We simply impose:

p (e) eg + (1− p (e)) eb = 1. (69)

We suspect that this is in the nature of a normalization. Denote bank leverage by L:

L ≡
(
Ñ + d̃

)
/Ñ. (70)

We calibrate
sdb, E

b, L,

where sdb is the cross-sectional standard deviation of the nominal return on bank equity and
Eb is the corresponding cross-sectional mean. We will use these three objects and (69) to
determine T̃ , b, g, ā. But, we must assume a value for the exogenous parameters, b̄.
The market clearing condition for capital implies:

L =
qk̄

Ñ

1

p (e) eg + (1− p (e)) eb
=

k̄

Ñ
, (71)

using (69) and the fact, q = 1. Conditional on L, this gives us an expression that determines
net worth, Ñ . Then, the law of motion for net worth (i.e., (13)) allows us to pin down T̃ :

T̃ = [1− γR/(µz∗π)]Ñ .

From the d-condition,

Rk =
R

p (e) eg + (1− p (e)) eb
= R, (72)

using (69), so that we now have Rk.
From ν-condition,

Rd
b = ebRk Ñ + d̃

d̃
= ebR

L

L− 1
. (73)

where we have substituted using (72).
We find it convenient to compute the spread, though this does not directly bear on the

calibration objects. The interest rate spreads for banks is, using the µ-equation:

spreadb ≡ Rd
g −R =

1− p(e)
p(e)

(R−Rd
b).

Combining this with (73):

spreadb =
1− p(e)
p(e)

(
1− eb L

L− 1

)
R (74)

Next, we derive the expression for the cross-sectional variance of return on bank equity.
The return on bank equity when a firm finds a good entrepreneur and when a firm finds a bad



entrepreneur are given by:

egRL−Rd
g(L− 1) and

we assume this is binding,=0︷ ︸︸ ︷
ebRL−Rd

b(L− 1) ,

respectively. Recall that in the case of the binomial distribution, if a random variable can be
xh with probability p and xl with probability 1 − p, then its variance is p (1− p)

(
xh − xl

)2
.

We conclude that the cross sectional standard deviation of the return on bank equity is:

sdb = [p (e) (1− p (e))]1/2
[
egRL−Rd

g(L− 1)−
(
ebRL−Rd

b(L− 1)
)]

= [p (e) (1− p (e))]1/2
[(
eg − eb

)
RL−

(
Rd
g −Rd

b

)
(L− 1)

]
From µ-condition,

Rd
g −Rd

b =
R−Rd

b

p (e)
=
R− ebR

p(e)eg+(1−p(e))eb
Ñ+d̃
d̃

p (e)
(75)

=
R

p (e)

[
1− eb Ñ + d̃

d̃

]
=

R

p (e)

[
1− eb L

L− 1

]
=
spreadb
1− p(e)

since
Ñ + d̃

d̃
=
Ñ + d̃

Ñ

Ñ

d̃
=

L

L− 1
.

Replace Rd
g −Rd

b in the expression for sdb we obtain

sdb = [p(e)(1− p(e))] 12R
[
(eg − eb)L− L(1− eb)− 1

p(e)

]
.

According to the d equation with R = Rk :

1 = p (e) eg + (1− p (e)) eb = p (e)
(
eg − eb

)
+ eb.

Then, substituting this into the sdb equation:

sdb = [p(e)(1− p(e))] 12R
[

1− eb
p (e)

L− L(1− eb)− 1

p(e)

]
= [p(e)(1− p(e))] 12R 1

p (e)
,

or,

sdb =

[
1− p(e)
p (e)

] 1
2

R. (76)

Given sdb, (76) determines p (e). Then, (74) determines eb given L. The probability of
finding a good entrepreneur is (using (69)):

p (e) =
1− eb
eg − eb , (77)

and so this can be solved for g. We now have Rk from (72), Rd
b from (73), Rd

g from (75), Ñ
from (71), d̃ from (70). We still need vz, η and e. In addition, we still require ā.



Consider the η-condition,

e =
λz b̄

µz∗π

[(
eg − eb

)
Rk
(
Ñ + d̃

)
− R

p (e)

(
1− eb L

L− 1

)
d̃

]
,

using (75) to solve out for Rd
g −Rd

b . Then,

e =
λz b̄

µz∗π

[(
eg − eb

)
RkL− R

p (e)

(
1− eb L

L− 1

)
(L− 1)

]
Ñ

=
λz b̄

µz∗π

[(
eg − eb

)
RL− R

p (e)

(
L− 1− ebL

)]
Ñ

=
λz b̄

µz∗π

[
L− 1

p (e)

(
L− 1− ebL

)
(eg − eb)

] (
eg − eb

)
RÑ

Using (77),

e =
λz b̄

µz∗π

[
L− eg − eb

1− eb
L
(
1− eb

)
− 1

(eg − eb)

] (
eg − eb

)
RÑ

=
λz b̄

µz∗π

[
L−

L
(
1− eb

)
− 1

1− eb

] (
eg − eb

)
RÑ

or,

e =
λz b̄

µz∗π

eg − eb
1− eb RÑ, (78)

which determines e. Next, we have
p (e) = ā+ b̄e, (79)

which determines ā.
We still have the following two equations:

e : (λz + νz)
1

µz∗π
b̄
(
Rd
g −Rd

b

)
d̃+ η = 0, (80)

Rd
g : νzp (e) + ηλz b̄ = 0. (81)

Equations (80)-(81) are two equations in νz, η. Now solve for η using (80):

η = − (λz + νz)
1

µz∗π
b̄
(
Rd
g −Rd

b

)
d̃,

and use this to substitute out for η in (81):

νzp (e)− (λz + νz)
1

µz∗π
b̄
(
Rd
g −Rd

b

)
d̃λz b̄ = 0,

or,

νz =

λz
µz∗π

(
b̄
)2 (

Rd
g −Rd

b

)
d̃λz

p (e)− 1
µz∗π

(
b̄
)2 (

Rd
g −Rd

b

)
d̃λz

(82)

η = − (λz + νz)
1

µz∗π
b̄
(
Rd
g −Rd

b

)
d̃. (83)



This completes the computations we set out to accomplish.

D.4 Steady State Algorithm, Unobserved Effort Equilibrium

Here is an algorithm. We specify a value for π and compute R using (62). From (72) we obtain
Rk. From (64) we obtain rk. From (59) we obtain h/k̄. Solve (67) for w̃.
Combining (65) and (66):

c+ g +
i

µΥ

=

(
k̄

hµ∗zΥ

)α
h

1

λf
.

Substituting out for i using (61) and dividing the result by h :

c

h
+
g

h
+

(
1− (1− δ) 1

µ∗zΥ

)
k̄
h

µΥ

=

(
k̄

hµ∗zΥ

)α
1

λf
.

We specify that g is a given fraction, ηg, of steady state gross output or GDP (both are the
same in steady state), so that :

g = ηg

(
k̄

µ∗zΥ

)α
h1−α 1

λf

g

h
= ηg

(
k̄

hµ∗zΥ

)α
1

λf
.

Then,

c

h
=
(
1− ηg

)( k̄

hµ∗zΥ

)α
1

λf
−

(
1− (1− δ) 1

µ∗zΥ

)
k̄
h

µΥ

,

and c/h is now determined. From (63),

λz =
1

(c/h)h

µ∗z − bβ
µ∗z − b

,

where h is yet to be determined. Substitute this expresion for λz into (55) to obtain:

(10)h =

[
1

(c/h)h

µ∗z − bβ
µ∗z − b

1

λwψL
w̃

] 1
σL

,

where W has been set to unity, reflecting π = π̄. Solve the resulting expression for h :

h
1+ 1

σL =

[
1

(c/h)

µ∗z − bβ
µ∗z − b

1

λwψL
w̃

] 1
σL

,

or,

h =

[
1

(c/h)

µ∗z − bβ
µ∗z − b

1

λwψL
w̃

] 1
1+σL

,

where c/h is the object derived above.
Given k̄ (= h/(h/k̄)) and λz we can compute the financial variables:Eb = p (e)

[
RgL−Rd

g (L− 1)
]

d̃, Ñ , Rd
g, R

d
b , e, νz, η

using the approach in the previous section. In particular, given sdb, p (e) is determined by



(76); given L (74) determines eb. The expression (77) can be solved for eg. Then, Rd
b can be

solved from (73); Rd
g from (75); Ñ from (71) and d̃ from (70). Then, ā and e can be solved

using (??) and (??). Finally, νz and η can be solved using (82) and (83). At the end of the
calculations we need to verify that

νz > 0, p (e) > 1/2, c > 0, d̃ > 0, Ñ > 0, g > b, e > 0, k̄ > 0, Rd
g > Rd

b

Some of these tests are nearly redundant. For example, Rd
g > Rd

b by the calibration (see (75)).

D.5 Steady State Algorithm, Unobserved Effort with Leverage Re-
striction

In this section we discuss the computation of equilibrium under a binding leverage restriction.
Our algorithm does not impose any of the calibration restrictions that we imposed in the
previous section, and so it must be a different one. In terms of the equilibrium conditions from
the section on price and wage equations, we have the equations in (58), which we reproduce
here:

(1)s = 1/λf ,

(2)w̃ = λw
ψLh

σL

λz
.

In terms of the non-price and wage equations, we have (59) and (60):

(3)rk = α

(
Υµ∗zh

k̄

)1−α

s,

(4)i =

[
1

p (e) eg + (1− p (e)) eb
− (1− δ) 1

µ∗zΥ

]
k̄

We also have (62) and (63):

(5)R =
πµ∗z
β
,

(6)λz =
1

c

µ∗z − bβ
µ∗z − b

.

The other equations listed right after this are:

s, w̃, h, λz, r
k, k̄, i, e, R,Rk

(7)Rk =
rk + 1− δ

Υ
π

(8)c+ g +
i

µΥ

=

(
k̄

µ∗zΥ

)α
h1−α − φ

Here, φ and g are exogenous parameters. They are not calibrated in this section.

(9)w̃ = s (1− α)

[
Υµz∗h

k̄

]−α
.



The financial sector equations are:

(10)e : (λz + νz)
b̄

µz∗π

(
Rd
g −Rd

b

)
d̃+ η = 0, (84)

(11)d : Λ = (λz + vz)
1

µz∗π

([
p (e) eg + (1− p (e)) eb

]
Rk −R

)
,

(12)Rd
g : νzp (e) + ηλz b̄ = 0,

(13)µ : R = p (e)Rd
g + (1− p (e))Rd

b ,

(14)η : e =
λz b̄

µz∗π

[(
eg − eb

)
Rk
(
Ñ + d̃

)
−
(
Rd
g −Rd

b

)
d̃
]
,

(15)ν : ebRk
(
Ñ + d̃

)
−Rd

b d̃ = 0,

(16)Ñ =
γ

µz∗π

{[
p (e) eg + (1− p (e)) eb

]
Rk
(
Ñ + d̃

)
−Rd̃

}
+ T̃ ,

(17)k̄ =
[
p (e) eg + (1− p (e)) eb

] (
Ñ + d̃

)
(18)LÑ = Ñ + d̃.

We have the following 11 non-financial market unknowns (steady state inflation is always
fixed at π):

c, s, w̃, h, λz, r
k, k̄, i, e, R,Rk.

We have the following 7 additional financial market variables:

νz, R
d
g, R

d
b , η, d̃, Ñ ,Λ.

Thus, we have 18 equations in 18 unknowns.
Here is an algorithm. It is a one-dimensional search for a value of Ñ that enforces equation

(16). We now discuss how the other endogenous variables in (16) are computed.
Assign an arbitrary value to 0 ≤ p (e) ≤ 1. From this we can compute e using

p (e) = ā+ b̄e.

We compute k̄ from (17) and i from (4). We then reduce (14) to one nonlinear equation in one
unknown, h. To see this, given k̄, (8) now defines c as a function of h :

c =

(
k̄

µ∗zΥ

)α
h1−α − φ− i

µΥ

− g

Similarly, (6) defines λz as a function of h. Substituting (3) into (7):

Rk =
α
(

Υµ∗zh
k̄

)1−α
1
λf

+ 1− δ
Υ

π,

we obtain that Rk is a function of h. Substituting from (13) into (14), we obtain:

e =
λz b̄

µz∗π

[(
eg − eb

)
Rk
(
Ñ + d̃

)
− Rd̃−Rd

b d̃

p (e)

]



Substituting from (15):

e =
λz b̄

µz∗π

(eg − eb)Rk
(
Ñ + d̃

)
−
Rd̃− ebRk

(
Ñ + d̃

)
p (e)


Note that the right hand side of this expression is a function of h alone. We adjust the value
of h until this expression is satisfied.
We use (15) to compute

Rd
b = ebRk Ñ + d̃

d̃
.

We also have Rd
g from (13):

Rd
g =

R− (1− p (e))Rd
b

p (e)
.

We compute Λ from (11).
Solving for η from (10):

η = − (λz + νz)
b̄

µz∗π

(
Rd
g −Rd

b

)
d̃.

Substitute this into (12)

νzp (e)− (λz + νz)
b̄

µz∗π

(
Rd
g −Rd

b

)
d̃λz b̄ = 0,

and solving this for νz, we obtain:

νz =
λz

b̄
µz∗π

(
Rd
g −Rd

b

)
d̃λz b̄

p (e)− b̄
µz∗π

(
Rd
g −Rd

b

)
d̃λz b̄

.

So that we have η and νz.
Finally, we solve (9) for w̃. We adjust p (e) until (2) is satisfied. Thus, for an arbitrary

choice of value for Ñ we compute p (e) and h as described above. We adjust the value of Ñ
until (16) is satisfied.

D.6 Steady State Algorithm, Observed Effort

In the observed effort case, the equilibrium conditions for the financial sector do not require
computing Rd

g and R
d
b and the multipliers, η and vz, are both zero. This means that we can

ignore equations (10), (12), (13), (15) in (84). Thus, the financial sector equilibrium conditions
in nonstochastic steady state are:



(11)d : Λ = λz
1

µz∗π

([
p (e) eg + (1− p (e)) eb

]
Rk −R

)
(14)η : e =

λz b̄

µz∗π

(
eg − eb

)
Rk
(
Ñ + d̃

)
,

(16)Ñ =
γ

µz∗π

{[
p (e) eg + (1− p (e)) eb

]
Rk
(
Ñ + d̃

)
−Rd̃

}
+ T̃ ,

(17)k̄ =
[
p (e) eg + (1− p (e)) eb

] (
Ñ + d̃

)
(18)LÑ = Ñ + d̃.

When leverage is unrestricted, then Λ = 0 and (18) simply defines leverage, L. When the
leverage restriction is imposed and is binding, then L in (18) is exogenous and Λ > 0.
We have the following 11 non-financial market unknowns (steady state inflation is always

fixed at π):
c, s, w̃, h, λz, r

k, k̄, i, e, R,Rk.

When the leverage restriction is non-binding, we have the following 3 additional financial
market variables:

d̃, Ñ , L,

with the understanding, Λ = 0. In terms of equations, we have 9 non-financial market equations
and the above 5 financial market equations. Thus, we have 14 unknowns and 14 equations.
When the leverage restriction is binding, then there is an additional equation that assigns a
value to L and there is an additional unknown, Λ.
Here is an algorithm for solving the observed effort steady state when the leverage constraint

is nonbinding, Λ = 0. Combining (11) (with Λ = 0) and (16), we obtain Ñ = γ
µz∗π

RÑ + T̃ , so
that

Ñ =
T̃

1− γ
µz∗π

R
. (85)

So, we can compute Ñ immediately. Fix a value of p (e) . Then, using (11) with Λ = 0 :

Rk =
R

p (e) eg + (1− p (e)) eb
. (86)

Then, rk is computed using (7), h/k̄ is obtained from (3), and w̃ is computed from (9). Now
fix a value for h, so that we have k̄.We obtain d̃ from (17), c from (8) and λz from (6). Adjust
h until (14) is satisfied. Adjust p (e) until (2) is satisfied.
We must consider the possibility that the observed effort equilibrium has the property,

p (e) = 1, e ≤ λz b̄

µz∗π

(
eg − eb

)
Rk
(
Ñ + d̃

)
, (87)

so that (14) does not hold. Since (11) and (16) are satisfied, we can still compute Ñ using
(85). Set p (e) = 1 and compute Rk using (86). We can compute rk, h/k̄ and w̃ using (7), (3)
and (9), as before. Now fix a value for h, so that we have k̄. We obtain d̃, c, λz from (17), (8)
and (6), as before. Adjust h until (2) is satisfied. Finally, verify that the inequality in (87) is
satisfied.
Now consider the case of a binding leverage constraint. We cannot compute Ñ as before.

Also, equation (11) does not hold with Λ = 0, so that we do not have access to (86). A different
algorithm is required. Consider the following one. Fix a value for Ñ and use (18) to compute



d̃. Fix p (e) . Use (17) to compute k̄. Use (4) to compute i.
Fix h. Compute c from (8) and λz from (6). Compute rk from (3) and Rk from (7). Adjust

h until (14) is satisfied. Compute w̃ from (9). Adjust p (e) until (2) is satisfied. Finally, adjust
Ñ until (16) is satisfied.
Again, we must consider the possibility that p (e) = 1 and (14) does not hold. As before,

fix a value for Ñ and use (18) to compute d̃. Set p (e) = 1 and compute k̄, i using (17) and (4).
Fix a value for h. Compute c, λz, rk, Rk, w̃ from (8), (6), (3), (7), (9). Adjust h until (2) is
satisfied. Adjust Ñ until (16) is satisfied. Finally, we must verify (87).




