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In this online appendix, we derive the optimal mechanism for the environment in our paper,

using the techniques developed by Myerson (1981). We also show that there is a unique

trembling hand perfect equilibrium for our environment under complete information.

Optimal Mechanisms

We start with the optimal mechanism for the two-type case.

Proposition 1 For the two-type case, if vL ≥ αvH , the BIN-TAC mechanism with d = n

and p = vH − 1
n
(vH − vL) is optimal. If vL < αvH , then the optimal mechanism is the

BIN-TAC mechanism with d =∞ and p = vH .

Proof Consider an (optimal) incentive compatible mechanism for the two-type case. Let

qi,L and qi,H be the probability that the mechanism allocates the item to bidder i if her type

is respectively low and high. We assume, without loss of generality, that if the mechanism

allocates the item to a low-type bidder, it charges the bidder a price of vL. Let pi,H be

the expected payment of bidder i to the mechanism if her type is high. By the incentive

compatibility constraint we have qi,HvH − pi,H ≥ qi,L(vH − vL). Hence, for an optimal

mechanism we get

pi,H = qi,HvH − qi,L(vH − vL)
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Therefore, the expected revenue of the mechanism from buyer i is equal to:

α(qi,HvH − qi,L(vH − vL)) + (1− α)qi,LvL = αvHqi,H + qi,L(vL − αvH)

Observe that for an optimal mechanism qi,L is equal to 0 if vL < αvH . In this case,

pi,H = qi,HvH which is equivalent to a posted price mechanism with price vH or a BIN-

TAC mechanism with d =∞. In the rest of the proof, we assume vL ≥ αvH .

The following LP gives an upper-bound on the revenue of any optimal solution.

Maximize{qi,H ,qi,L} αvH
∑n

i=1 qi,H + (vL − αvH)
∑n

i=1 qi,L

Subject to:
∑n

i=1

(
αqi,H + (1− α)qi,L

)
≤ 1

α
∑n

i=1 qi,H ≤ 1− (1− α)n

The first constraint holds because we can allocate the item to at most to one bidder. The

second constraint follows from the 1− (1− α)n bound on the probability that there exists a

bidder of high-type. Since vH > vL−αvH
1−α , the optimal solution of the program above is given

by:

qi,L =
1

n
(1− α)n−1 & qi,H =

1

αn
(1− (1− α)n)

This corresponds to the mechanism that allocates the item at random to the bidder with

the high type and if there’s no high bids then it randomly allocates the item at price vL.

Therefore, the revenue of any optimal mechanism is bounded by:

vH (1− (1− α)n) + (vL − αvH)(1− α)n−1

On the other hand, the revenue of BIN-TAC with d = n (and p = vH − 1
n
(vH − vL)) is equal

to:

(1− α)n−1vL + nα(1− α)n−1p+
(
1− (1− α)n − nα(1− α)n−1

)
vH

= (1− α)n−1vL + nα(1− α)n−1vH − α(1− α)n−1(vH − vL) +
(
1− (1− α)n − nα(1− α)n−1

)
vH

= (1− α)n−1(vL − αvH) + (1− (1− α)n) vH
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Therefore, BIN-TAC with d = n is optimal. �

We now consider the general model. Since the payment structure is well-known given the

ironed virtual valuations, the challenge is to compute the ironed virtual values. This approach

requires the distribution of values, F , to be strictly increasing. Hence, we consider the

following distribution of the values.

fε(x) =


βfL(x) x ∈ [ωL, ωL]

ε x ∈ (ωL, ωH)

fH(x)α x ∈ [ωH , ωH ]

Fε(x) =


βFL(x) x ∈ [ωL, ωL]

β + ε(x− ωL) x ∈ (ωL, ωH)

(1− α) + αFH(x− ωH) ∈ [ωH , ωH ]

where β + ε(ωH − ωL) + α = 1. As ε tends to 0 we get the original model back. We need to

“iron” the virtual values. For q ∈ [0, 1], let F−1ε (q) be the inverse of Fε(·). Define:

h(q) = F−1ε (q)− 1− q
fε (F−1ε (q))

H(q) =

∫ q

0

h(y)dy

G(q) = min
λ,r1,r2∈[0,1],λr1+(1−λ)r2=q

{λH(r1) + (1− λ)H(r2)}

This implies that G(·) is the highest convex function on [0, 1] such that G(q) ≤ H(q) for

every q. Define φ(v) = G′(F (v)) as the virtual value of type v. The optimal mechanism

randomly allocates the item to one of the bidders with the highest positive virtual value.

We first show that the ironed virtual values are the same as the original virtual valuations,

except for a set of quantiles between q∗ and (1− α):

Lemma 1 Let q∗ = (1− α)ṽ and ṽ be the solution of

−F 2(ṽ) + (2− α)F (ṽ) + α(ωH − ṽ)f(ṽ) = 1− α.
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Then, by assumption ψ(ωL) ≤ ψ(ωH), as ε→ 0,

G′(q) =


h(q) q ∈ [0, q∗]

h(q∗) q ∈ (q∗, 1− α)

h(q) q ∈ [1− α, 1]

Proof First note that H(q) is convex in [0, β] because of the assumption that x− 1−F (x)
f(x)

is

increasing in [ωL, ωL]. It is also decreasing in [0, q0] and increasing in [q0, β], where q0 = F (r∗)

is the minimum of H(·) in this range. Also, observe that H(q) is decreasing in [β, 1 − α]

because h(q) < 0 in this interval. In addition, by the assumption that ψ(v) is increasing over

the regions [ωL, ωL] and [ωH , ωH ], H(q) is increasing and convex in [1 − α, 1]. Therefore,

G(·) includes the tangent line from the point (1− α,H(1− α)) to H(q) in [0, β]. Let q∗ be

the tangent point. We have

G(q) =


H(q) q ∈ [0, q∗]

(q−q∗)H(q∗)+(1−α−q)H(1−α)
1−α−q∗ q ∈ (q∗, 1− α)

H(q) q ∈ [1− α, 1]

which immediately leads to the claim. �

In the rest we compute q∗. For q ∈ [0, β],

H(q) =

∫ q

0

(
F−1ε (y)− 1− y

fε (F−1ε (y))

)
dy

=

∫ F−1(q)

ωL

(
x− 1− Fε(x)

fε(x)

)
fε(x)dx

=

∫ F−1(q)

ωL

((xfε(x) + Fε(x))− 1) dx

= (q − 1)F−1ε (q) + ωL

In particular,

H(β) = (β − 1)ωL + ωL

4



For q ∈ (β, 1− α), because h(q) = 2q−(1+β)
ε

+ ωL, we get

H(q) = H(β) +

[
x2 − (1 + β − εωL)x

ε

]q
β

= (β − 1)ωL + ωL +
q2 − β2 − (q − β)(1 + β − εωL)

ε

= (q − 1)ωL + ωL + (q − β)
q − 1

ε
(1)

H(1− α) = −αωL + ωL + (1− α− β)
−α
ε

= −αωH + ωL (2)

To iron the distribution, we compute the tangent from H(1− α) to H(q), for q ∈ [0, 1− α].

Note that if q∗ is the tangent point then

h(q∗) =
H(1− α)−H(q∗)

1− α− q∗
(3)

Observe that by Eq. (1) we have

H(1− α)−H(q∗)

1− α− q∗

=
(−αωH + ωL)− ((q∗ − 1)F−1ε (q∗) + ωL)

1− α− q∗

=
−αωH − (q∗ − 1)F−1ε (q∗)

1− α− q∗

Let ṽ = F−1ε (q∗), i.e., q∗ = Fε(ṽ) = βFL(ṽ). Therefore,

H(1− α)−H(q∗)

1− α− q∗
=
−αωH − (Fε(ṽ)− 1)ṽ

1− α− Fε(ṽ)

h(q∗) = ṽ − 1− Fε(ṽ)

fε(ṽ)

As ε→ 0, the Fε(·)→ F (·). Plugging into Eq. (3) we get

(ṽf(ṽ)− 1 + F (ṽ))(1− α− F (ṽ))

= f(ṽ)
(
−αωH − (F (ṽ)− 1)ṽ

)
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Hence, re-arranging the terms,

−F 2(ṽ) + (2− α)F (ṽ) + α(ωH − ṽ)f(ṽ) = 1− α

Observe that only if H(1− α) > H(q0), then h(q∗) is positive.

−αωH + ωL ≥ (q0 − 1)F−1 (q0) + ωL = (F (r∗)− 1)r∗ + ωL

This is equivalent to αωH ≤ (1− F (r∗))r∗. If this fails, the optimal reserve r∗ is above the

ironed region, and so a second price auction is optimal.

Finally, observe that

h(q∗) ≤ h(β) = ωL ≤ ωH −
1− Fε(ωH)

fε(ωH)

which shows that G(·) is convex and completes the proof.

The Complete Information Environment

We show that for almost all realizations of the type vector v, all trembling hand perfect

equilibria of a BIN-TAC auction under complete information lead to the same revenues and

consumer surplus. Fix the parameters (p, d, r) and let the fixed types v1, v2 . . . vN wlog be

ordered so that v1 is the highest type, v2 the second highest etc. We construct a trembling

hand perfect equilibrium according to the following algorithm. For every type, compare the

payoff to taking the BIN option and the TAC option, assuming all other bidders TAC, and

return the higher payoff action. Except on a measure zero set of valuation realizations the

agents have strict preferences over these options, so this algorithm terminates in a unique

prediction with probability one. Now if some type vj wants to BIN, it must be that every

higher type vi, i < j also wants to BIN. To see this, notice that the payoff differential from

taking BIN is vi − vj (all other agents TAC); whereas payoff increase from taking TAC is

smaller, no more than 1
d
(vi− vj). So all the action vectors are of the form BIN for the top k

agents (k ≥ 0) and TAC for the rest. Suppose k = 0, so that no agent BIN. Then this action

vector is the unique equilibrium, as the algorithm solved the correct decision problem for

every agent (what to do when all other agents TAC). Suppose then that k > 0 and consider

the k-th highest agent. He is indifferent between BIN and TAC (he will lose in either case).

But his decision is trembling-hand perfect: the only case in which he might get positive
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surplus is if all other agents TAC, and then the algorithm outputted the correct action for

this case. Since this action vector is the unique mutual best response vector in the only case

of interest, it follows that this is the unique trembling-hand perfect equilibrium.
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