Supplementary Appendix to Private

Information and Insurance
Rejections

For online publication only

This Appendix contains supplementary material for Private Information and Insur-
ance Rejections. Appendix A contains the proof of Theorem 1 and discusses Remark
1. Appendix B provides proofs for the lower bound approach discussed in Section 4.1.
Appendix C discusses the data, including details for the covariate specifications and the
sample selection. Appendix D discusses the empirical specification for the lower bound
estimator and presents additional robustness checks referred to in Section 6.5. Section E
provides details on the specification and estimation of the structural approach referred to
throughout Section 7. Finally, Section F presents the a selection of pages from the LTC

underwriting guidelines of Genworth Financial.

A Theory Appendix

A.1 Proof of No-Trade Theorem

I prove the no-trade theorem in several steps. First, I translate the problem to a maxi-
mization problem in utility space. Second, I prove the converse of the theorem directly by
constructing an implementable allocation other than the endowment when Condition (1)
does not hold. Third, I prove the no trade theorem for a finite type distribution. Fourth, I
approximate arbitrary distributions satisfying Condition (1) with finite type distributions
and pass to the limit, thus proving the no trade theorem for a general type distribution.

Most of the steps of the proof are straightforward. Indeed, it is arguably quite obvious
that condition (1) rules out the profitability of any pooling contract. The theoretical
contribution is to show that condition (1) also rules out the profitability of separating
contracts. Indeed, the ability for insurance companies to offer separating contracts is
an important ingredient in previous models of this environment (Spence [1978], Riley
[1979], Chade and Schlee [2011]). In Lemma (A.5), I show that condition (1) implies the
profitability of a menu of contracts is bounded above by the profitability of a pooling

allocation.



A.1.1 Utility Space

First, translate the problem to utility space so that the incentive and individual rationality
constraints are linear in utility. Let c¢(u) = u™' (u) denote the inverse of the utility
function u (c¢), which is strictly increasing, continuously differentiable, and strictly convex.
I denote the endowment allocation by E = {(cr (p),cnr (p)}, = {(w—1,1)},. Let us
denote the endowment allocation in utility space by EY = {u(w —1),u(w)},. To fix
units, I normalize uyy (1) = u (w).

Given a utility allocation AY = {ur, (p),unz, (p)} denote the slack in the resource

pew’
constraint by

(A = [ == pe(us () = (1= P ()] F ()

I begin with a useful lemma that allows us to characterize when the endowment is the
only implementable allocation.
Lemma A.1 (Characterization). The endowment is the only implementable allocation if

and only if EY is the unique solution to the following constrained mazimization program,
P1

P1 : {uL(p%if(p)}p/ [w — pl — pe(ug (p)) — (1 —p) c(ung (p))] dF (p)
st pun(p)+ (1= p)uve (0) 2 pus () + (1= p)us () Vpp € W

pur (p) + (L = p)ung (p) = pu(w—1)+ (1 —p)u(w) Vpe V¥

Proof. Note that the constraint set is linear and the objective function is strictly con-
cave. The first constraint is the incentive constraint in utility space. The second con-
straint is the individual rationality constraint in utility space. The linearity of the con-
straints combined with strict concavity of the objective function guarantees that the
solutions are unique. Suppose that the endowment is the only implementable allo-
cation and suppose, for contradiction, that the solution to the above program is not
the endowment. Then, there exists an allocation AY = {ug (p),unr (p)} such that
[ w—pl —pc(ug (p)) — (1 —p)c(une (p))]dF (p) > 0 which also satisfies the IC and
IR constraints. Therefore, AV is implementable, which yields a contradiction.

Conversely, suppose that there exists an implementable allocation B such that B # E. Let
BY denote the associated utility allocations to the consumption allocations in B. Then,
BY satisfies the incentive and individual rationality constraints. Since the constraints
are linear, the allocations CV (t) = tBY + (1 — t) EY lie in the constraint set. By strict



concavity of the objective function, IT (CY (¢)) > 0 for all ¢ € (0,1). Since II (EV) = 0,

EY cannot be the solution to the constrained maximization program.

The lemma allows me to focus attention on solutions to P1, a concave maximization

program with linear constraints.

A.1.2 Necessity of the No Trade Condition

I begin the proof with the converse portion of the theorem: if the no-trade condition does

not hold, then there exists an implementable allocation A # E which does not utilize all
resources and provides a strict utility improvement to a positive measure of types.

Lemma A.2 (Converse). Suppose Condition (1) does not hold so that there exists p €

W\ {1} such that %“Zfé’uj)l) > 1?};}7;;5]13] . Then, there exists an allocation AV = {(iy, (p) , tinz (p))}
and a positive measure of types, ¥ C ¥, such that

p

pit (p) + (1 = p) i (p) > pu(w—1)+ (1 —p)u(w) Vpel

and
/ (W — pL — pe (i (p) — (1 — p) e (i (p))] dF (p)

Proof. The proof follows by constructing an allocation which is preferable to all types
p > p and showing that the violation of Condition (1) at p ensures its profitability. Given
p € U, either P = p occurs with positive probability, or any open set containing p has
positive probability. In the case that p occurs with positive probability, let ¥ = {p}.
In the latter case, note that the function E [P|P > p| is locally continuous in p at p so
that WLOG the no-trade condition does not hold for a positive mass of types. WLOG, I
assume p has been chosen so that there exists a positive mass of types U such that pE v

implies p > p. Then, for all p € ¥, I have ¥ C U such that

p v (w—1) E[P|P > p
1—p o (w) 1 — E[P|P > p]

Vpe‘if

Now, for €, > 0, consider the augmented allocation to types p € U

ur(e,n) = u(w—1)+e+n

unr (e,m) = u(w)—

Note that if n = 0, € traces out the indifference curve of individual p. Construct the



utility allocation AY (¢,n) defined by

(u(w—l)—l—a—i—n,u(w)—%s) if p>p

(iir, (p) , v, (p)) :{ (u(w = 1), (w) if p<p

Note that for e > 0 and 1 > 0 the utility allocation (ur, (p) , unr (p)) is strictly preferred by
all types p > p relative to the endowment utility allocation. Therefore, AV is individually
rational and incentive compatible. I now only need to verify that there exists an allocation

with € > 0 and 1 > 0 which does not exhaust resources. I have

H(ﬁ,n)z/[w—pl—pC(ﬁL (p)) = (1 = p)c(in (p)] dF (p)

Notice that this is continuously differentiable in € and 7. Differentiating with respect to

¢ and evaluating at ¢ = 0 yields

~

Fleo= [ e o=t + Lo - pd )| 12 baF ()

which is strictly positive if and only if

B[PIP 2§l ¢ (u(w = 1+n)) < 77— (1= BIPIP 2 ) ¢ (u(w))
Notice that this is continuous in 1. So, at n = 0, I have

oIl p v (w—1) E[P|P > p]
1—p w(w) ~ 1-E[PIP>]

and thus by continuity, the above condition holds for sufficiently small n > 0, proving
the existence of an allocation which both delivers strictly positive utility for a positive
fraction of types and does not exhaust all resources.

This shows that Condition (1) is necessary for the endowment to be the only imple-

mentable allocation. O

A.1.3 Useful Results

Before showing that Condition (1) is sufficient for no trade, it is useful to have a couple

of results characterizing solutions to P1.



Lemma A.3. Suppose Condition (1) holds. Then for all cp,cnp € [w —1,1],

p () _ _E[PIP>y)

Vp € U\ {1
l—pu'(eng) — 1= E[P|P > p] pe Il
and if cp,eng € (w—1,1),
p u(cr) E[P|P > p]
A P\ {0,1
l—pu(eny) 1—E[P|P > p] pe 01}
Proof. Since v’ (¢) is decreasing in ¢, I have J;SVLL)) < “;(,1(”1;)1). Therefore, the result follows
immediately from Condition (1). The strict inequality follows from strict concavity of

u(c). O
Lemma A.4. In any solution to P1, c¢f, (p) > w —1 and ey, (p) < w.

Proof. Suppose A = {cr, (p),cnr (p)}, is a solution to P1. First, suppose that ¢y, (p) <
w — [. For this contract to be individually rational, I must have ¢y (p) > w. Incentive
compatibility requires ¢y, (p) < ¢ (p) < w —1V¥p < p and ey, (p) > enp (P) > w Vp < p.
Consider the new allocation A = {¢, (p), énr (p)} defined by

e (p) = ct(p) ifp>p
L (p) =
w—1 ifp<p

N enp(p) ifp>p
e (p) =
w ifp<p
Then A is implementable (IC holds because of single crossing of the utility function). It
only remains to show that II(A) < II (fl) But this follows trivially. Notice that the
IR constraint and concavity of the utility function requires that points (cr, (p), cnr (p)) lie
above the zero profit line p (w — I — ¢)+(1 — p) (w — cnr). Thus, each point (cr, (p), cnr (p))
must earn negative profits at each p < p.
Now, suppose ¢y (p) > w. Then, the incentive compatibility constraint requires

ene (p) > w Vp < p. Construct A as above, yielding the same contradiction. O]

I now prove the theorem in two steps. First, I prove the result for a finite type

distribution. I then pass to the limit to cover the case of arbitrary distributions.



A.1.4 Sufficiency of the No Trade Condition for Finite Types

To begin, suppose that W = {p;,...px}. I first show that Condition (1) implies that the
solution to P1 is a pooling allocation which provides the same allocation to all types.
Lemma A.5. Suppose ¥V = {pi,....,pn} and that condition (1) holds (note that this

requires py = 1). Then, the solution to P1 is a full pooling allocation: there exists ur, g

such that (ur, (p) ,unr (p)) = (ur,unr) for all p € W\ {0,1}, ur, (1) = ur, uyr (0) = tyyg.

Proof. Let AY = {uj, (p) , uy, (p)}, denote the solution to P and suppose for contradiction
that the solution to P is not a full pooling allocation. Let p = min {p|u} (p) = uj (1)},
let p_ = max {p|uj (p) # v} (1)}. The assumption that VU is finite implies that p > p_.
Let us define the pooling sets J = {p|u} (p) = uj (1)} and K = {p|u} (p) =u} (p-)}. 1
will show that a profitable deviation exists which pools groups J and K into the same
allocation. First, notice that if p = 1, then clearly it is optimal to provide group J with
the same amount of consumption in the event of a loss as group K, since otherwise the
IC constraint of the type p = 1 type would be slack. So, I need only consider the case
p <l

Notice that if the IR constraint of any member of group J binds (i.e. if the IR
constraint for p binds), then their IC constraint implies that the only possible allocation
for the lower risk types p < p is the endowment. This standard result follows from single
crossing of the utility function. Therefore, I have two cases. Either all types p € W\J
receive their endowment, (cr,cyr) = (w — I, w), or the IR constraint cannot bind for any
member of J. I consider these two cases in turn.

Suppose u} (p) = u(w — 1) and u}y; (p) = u (w) for all types p € W\J. Clearly, I must
then have that the IR constraint must bind for type p, since otherwise profitability could
be improved by lowering the utility provided to types p € W\J. I now show that the
profitability of the allocation violates the no-trade condition. The profitability of AY is

(A7) = [ = pl = peui () = (1= p)e (i, (9)]dF )
pe
Now, I construct the utility allocation AV by

(u(w—l)—kt,u(w)—%:ﬁt) if peld
(u(w —=1),u(w)) if p¢J

Since the IR constraint binds for type p, I know that there exists ¢ such that AY = AV



By Lemma A.4, { > 0 and AV satisfies IC and IR for any t € [O,f+ n} for some n > 0.
Since profits are maximized at t = ¢ and since the objective function is strictly concave,

it must be the case that

an (47)

dt |t=£ - 0

where

U ~
dHCS;U ) et = /pej [pc’ (ut (p)) — (1 —p) ¢ (ulyy (p)) % dF (p)

Re-arranging and combining these two equations, I have

p (i) _ EIPIP>4
T (cluy, 7)) 1 E[PIP =)

which, by strict concavity of u, implies

pu(w—1) E[P|P = p]
1—p o (w) 1= E[P|P > p]

which contradicts Condition (1).
Now, suppose that the IR constraint does not bind for any member of J. Then, clearly
the IC constraint for type p must bind, otherwise profit could be increased by lowering

the utility provided to members of J. So, construct the utility allocation BY to be

(s ) = e une ) + 355¢) if p2p
(ug, (p), uny, () if p<p

(ug, (p),uyr () = {

so that BY consists of allocations equivalent to AY except for p € J. By construction,
BYis IR for any €. Moreover, because of single crossing and because types are separated

(finite types), BY continues to be IC and IR for € € (—n,n) for some n > 0 sufficiently

dn(

small. Therefore, I must have |e=0 = 0, which implies

U o
T~ [ [reien-a-new o] e e
_ P Sl 5 ! D
= Pl ) [EIPIP >  r — 0= B 2 )
bty g USEPIPEA) [ EIPPA  wleli ()
- P e N TG [T e e )
=0



which implies
pu(c(uy(p) _  E[PIP=p
1—pu'(c(uy, (p) 1-E[P|P2=p]

which, by strict concavity of u, implies

D u’(w—l)> E[P|P > p]
1—p o (w) 1—E[P|P > p]

which contradicts Condition (1). Therefore, if Condition (1) holds, the only possible

solution to P1 is a full pooling allocation. O]

All that remains to show is that a full pooling allocation cannot be a solution to P1.

Lemma A.6. Suppose Condition (1) holds. Then, the only possible full-pooling solution
to P1 is EY.

Proof. Suppose for contradiction that AY # EV is a full-pooling solution to P1. Let
w},uy; denote the full pooling allocations AY. Recall p; = min V¥ is the lowest risk
type. Note that the IR constraint for the p; = min ¥ type must bind in any solution to
P1. Otherwise, profits could be increased by providing all types with less consumption,
without any consequences on the incentive constraints of types p > p;. Consider the
allocations CV defined by

(up unp) = (uf, + (1 =) (u(w — 1) —up) uyy + (1= 1) (u(w) —ujy,))

so that when ¢+ = 1 these allocations correspond to AY and t = 0 corresponds to the
endowment. Because the IR constraint of the p; type must hold, I know that these allo-
cations must follow the iso-utility curve of the p; type which runs through the endowment.

Differentiating with respect to ¢ and evaluating at ¢ = 0 yields

()
dt

y4

=0 = E[PIP 2 pi] ¢ (u(w—1)) = (1= E[P|P 2 p]) ¢ (u(w)) { -

where % comes from the fact that I can parameterize the iso-utility curve of the p; type
by up — 7, ung + 2

—Db1

7. But re-arranging the equation, I have

i1 (CY) 1 1 D1
- 7 — — > _— — >
o li=0 E[P|P > p|] 7w + (1 E[P’P—pl])u’(w)l—pl

_ 1-E[P|P>p)] <_ E[P|P > pi] u(w—1) p )
u' (W — L) 1 - E[P|P > p u' (w) 1—p

<0



which yields a contradiction of Condition (1) at p = p;. O

Therefore, I have shown that if W is finite, then if Condition (1) holds, the only possible
allocation is the endowment. It only remains to show that this property holds when W is

not finite.

A.1.5 Extension to Arbitrary Type Distribution

If F(p) is continuous or mixed and satisfies the no-trade condition, I first show that F’
can be approximated by a sequence F,, of finite support distributions on [0, 1], each of
which satisfy the no-trade condition.

Lemma A.7. Let P be any random variable on [0, 1] with c.d.f. F (p). Then, there exists
a sequence of random variables, Py, with c.d.f. FYN (p), such that FN — F uniformly and

E[Py|Py = p] > E[P|P > p] Vp, VN

Proof. Since F' is increasing, it has at most a countable number of discontinuities on
[0,1]. Let D = {4;} denote the set of discontinuities and WLOG order these points so
that lim._,+¢ F'(9;) — lim._,—¢ F' (;) is decreasing in ¢ (so that ¢; is the point of largest
discontinuity). Then, the distribution F'is continuous on W\ D. For any N, let wy denote
a partition of [0, 1] given by 2V +min {N, |D|} + 1 points equal to QLN for j =0,...,2" and
{6;i < N}. T write wy = {pjy}jijmin{N’lD‘}H. Now, define FN : wy — [0,1] by

FY (p) = F (max {p|p) < p})

so that FN converges to I’ uniformly as N — oo.

Unfortunately, I cannot be assured that FN satisfies the no-trade condition at each
N. But, I can perform a simple modification to FN to arrive at a distribution that does
satisfy the no-trade condition for all N and still converges to F'. To do so, consider the
following modification to any random variable. For any A € [0,1] and for any random
variable X distributed G (z) on [0, 1] define the random variable X, to be the random
variable with c.d.f. AG (z) and Pr{X, =1} = 1 — A. In other words, with probability A
the variable is distributed according to X and with probability 1 — A the variable takes
on a value of 1 with certainty. Notice that £ [X,| X, > z] is continuously decreasing in A
and E [X| Xy > z] =1 V.

Now, given FN with associated random variable PN, I define P} to be the random



variable with c.d.f. AF'N (p). T now define a sequence {Ay}, by
Ay =max {AE [PY|P\Y > p| > E[P|P >p] Vp}

Note that for each N fixed, the set {\E [PY|P) >p| > E[P|P >p| Vp} is a compact
subset of [0, 1], so that the maximum exists. Given Ay, I define the new approximating
distribution, FV (p), by

FY(p) = A FY (p)

which satisfies the no-trade condition for all N. The only thing that remains to show is
that Ay — 1 as N — 0.
By definition of Ay, for each N there exists py such that

E [P |PY > pn] = E[P|P > py]
Moreover, because Ay is bounded, it has a convergent subsequence, Ay, — A*. Therefore,

E | P

Pl > q} — E[Py+|Px= > (]

uniformly (over ¢) as k — 0, where Py« is the random variable with c.d.f. A*F (p).
Moreover,
E [Pffv’“k|P§V;k > q} S E[Py|Py > ]

uniformly (over ¢) as k — 0. Therefore,

E PP > fy| > E[PIP > fy]
so that I must have \* = 1.
Therefore, the distribution PV with c.d.f. FN (p) = Ay, F™* (p) for k > 1 has the
property
E PN P = p| = E[PIP 2 p]
and F™k (p) converges uniformly to F' (p). O

Now, returning to problem P1 for an arbitrary distribution F' (p) which satisfies the no-
trade condition. Let IT (A|F') denote the value of the objective function for allocation A un-
der distribution F. Suppose for contradiction that an allocation A = (i (p) , Gz (p)) #
(w — I, w) is the solution to P1 under distribution F, so that IT (A|F) > 0. Let F'N (p)

be a sequence of finite approximating distributions which satisfy the no-trade condition

10



and converge to F'. Let wy = {pﬁv } denote the support of each approximating distri-
bution. For any N, define the augmented allocation Ay = (4% (p), %, (p)) by choos-
ing (ur, (p),unr (p)) to be the most preferred bundle from the set {uL (pév) JUNT, (pév) }j.
Since A is incentive compatible, clearly I will have (ﬂ]LV (pév) L UN T (pﬁv)) = (ﬂL (pjv) JUNT (pjv))
By single crossing, for p # pY agents with p € (p},,pY) will prefer either allocation for
type pj_, or g)jv ) )

Clearly, Ay converges uniformly to A. Since Ay satisfies IC and IR by construction,
the no-trade condition implies that the allocation Ay cannot be as profitable as the

endowment, so that
I (AN|FN> <II(E|Fy) =0 YN

By the Lebesgue dominated convergence theorem (11 (fl ~N|F N) is also bounded below by
I <A|F> <0

Which yields a contradiction that A was the optimal solution (which required II <A|F ) >

0) and concludes the proof.

A.2 Remark 1

A proof of Remark 1 follows in the same manner as the proof of the no trade condition.
It is straightforward to see how the no trade condition holding for values p < F~! (1 — «)
rules out the tradability of pooling contracts that attract a fraction « of the population.
To see how it also rules out separating contracts, one can repeat the analysis of Lemma

A.5 noting that the measure of the sets J and K must be at least «.

11



B Properties of the Lower Bound Estimator

This section formally derives the properties of the nonparametric lower bound approach
presented in Section 4.1 and provides a proof of Proposition 2.

First, note that P is a mean-preserving spread of Py:

E[P|X,Z] = E[Pr{L|X,P}|X,Z]
= E[Pr{L|X,Z P}|X, 7]
= Pr{L|X, 7}
= Py

where the first equality follows from Assumption 1, the second equality follows from

Assumption 2, the third equality follows from the law of iterated expectations (averaging

over realizations of P given X and Z), and the fourth equality is the definition of Py.
Let Qp («) to be the a-quantile of P,

Qp () =inf{q|Pr{P < ¢} > o}
and @, (Pz) to be the a-quantile of the analogue,
@p, (a) = inf {g|Pr{Pz < ¢} > a}

Note that E [m (P)] can be represented as a weighted average of these quantiles:
1
Em(P) = [ [ExlQr(@ - Qr(a)]a > alda
0

- [ @ - e @aal] ao
:/1 Qrl) jada — B1P)

0 Ja>a -«
1

1
= a dada — E |P
@) [ dada-EIP

- [ @@ - BiP)os (11 ) da

Now it is straightforward to prove Proposition 2.

12



Proof of Proposition 2 The fact that P is a mean-preserving spread of P, implies
that

1 1
/ Qp, (a)da S/ Qp (a)da Yz € [0,1]
So,

1

1

Qr (0) — Qr, (a)]log (ﬁ) do
—dado

Qr(0) =@, ()] [ 1=
/ QPZ<>11f
[ 10r @)~ @r, (@) dada
([

- Qpy @)]da) {Zzda

—

—dado
a

O

Il |
th\c\

0
>

=}

where the last inequality follows from the fact that f; Qp (o) — Qp, (a)] dae > 0 for all

& because P is a mean-preserving spread of Py.
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C Data Appendix

C.1 Covariate Specification

The variables used in the pricing and full controls specifications for each market are
presented in Table Al. These specifications, along with the baseline age and gender
specification, cover a wide range of variables that insurance companies could potentially
use to price insurance and allow for an assessment of how the potential frictions imposed
by private information would vary with the observable characteristics insurance companies

use to price insurance.

LTC In LTC, the pricing specification primarily follows Finkelstein and McGarry [2006]
to control for variables insurers use to price insurance, along with the interaction of a rich
set of health conditions to capture how insurance companies would price contracts to
whom they currently reject. I include age and age squared, both interacted with gender;
indicators for ADL restrictions, an indicator for performance in the lowest quartile on
a word recall test, and indicators for numerous health conditions: presence of an ADL
or TADL, psychological condition, diabetes, lung disease, arthritis, heart disease, cancer,

™ For the extended controls specification, I add full

stroke, and high blood pressure.
interactions for age and gender, along with interactions of 5 year age bins with measures
of health conditions, indicators for the number of living relatives (up to 3), census region,

and income deciles.

Disability For disability, I construct the pricing specification using underwriting guide-
lines and also rely on feedback from interviews with a couple of disability insurance under-
writers at major US insurers. In general, there are three main categories of variables used
in pricing: demographics, health, and job information. The pricing specification includes
age, age squared, and gender interactions; indicators for self employment, obesity (BMI
> 40), the presence of a psychological condition, back condition, diabetes, lung disease,
arthritis, a heart condition, cancer, stroke, and high blood pressure. I also include a lin-
ear term in BMI to capture differential pricing based on weight. Finally, I include wage
deciles to capture differential pricing by wage.

The extended controls specification includes full interactions of age and gender, full

interactions of wage deciles, a part time working status indicator, job tenure quartiles,

"3Note that for the no reject sample many of these health conditions will in practice drop out of the
estimation because, for example, there are no people with ADLs in the no reject sample.

14



and a self employment indicator. I also include interactions between 5 year age bins and
the following health variables: arthritis, diabetes, lung disease, cancer, heart condition,
psychological condition, back condition, and BMI quartiles. I also include full interactions
between 5 year age bins and BMI quartiles. I also include full interactions of several job
characteristic variables: an indicator that the job requires stooping, the job requires lifting,
and the job requires physical activity. Finally, I include interactions between 5 year age
bins and census region (1-5).

In general, my conversations with underwriters suggest I have a decent approximation
to the way in which insurers currently price insurance. However, as discussed in the main
text, I do not observe the results of medical tests and attending physician statements,
which sometimes feed into the underwriting process. Underwriters suggest the primary
role of such tests is to verify application information, not for independent use in pricing;
but there may be some additional factors not included in my regressions that disability

insurers could use to price insurance.™

Life For life, the pricing specification primarily follows He [2009] who tests for adverse
selection in life insurance. The preferred specification includes age, age squared, and
gender interactions, smoking status, indicators for the death of a parent before age 60,
BMI, income decile, and indicators for a psychological condition, diabetes, lung disease,
arthritis, heart disease, cancer, stroke, and high blood pressure. I also include a set of
indicators for the years between the survey date and the AGE corresponding to the loss.”™

The extended controls specification adds full interactions of age and gender; full in-
teractions between age and the AGE in the subjective probability question; interactions
between 5 year age bins and smoking status, income decile, census region, and various
health conditions (heart condition, stroke, non-basal cell cancer, lung disease, diabetes
and high blood pressure); BMI; and an indicator for death of a parent before age 60.

In general, I approximate the variables insurers use to price insurance fairly well. As
with disability insurance, life insurers often require medical tests and attending physician
statements from applicants; and, as with disability insurance, my conversations with
underwriters suggest that the primary role of such tests is to verify application information

and ensure that there is no presence of a rejection condition. But, I cannot rule out that

"Even if one believes insurers would use more information to price policies to the rejectees, it should
be clear that my approach will still be able to simulate the extent to which private information would
afflict an insurance market if insurers priced using the set of observables I use from the HRS. With
additional data future work could explore different specifications and perhaps even make prescriptive
recommendations to underwriters about relevant variables for reducing informational asymmetries.

5T also include this in my age & gender and extended control specifications for life.
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such information could be used by insurance companies to price insurance.

Although I can well approximate the variables insurers use currently to price insurance,
the data does have one key limitation in constructing the variables insurers would use to
price insurance to the rejectees. A common rejection condition is the presence of cancer.
If insurers were to offer insurance to people with cancer, they would potentially price
differentially based on the organ in which the cancer occurs. Unfortunately, the HRS
does not report the organ in which the cancer occurs in all years. Fortunately, the 2nd
wave (1993/1994) of the survey does provide the organ in which a cancer occurs; therefore,
to assess whether pricing differentially based on the organ of the cancer would reduce the
amount of (or potentially remove all) private information, I construct a sample from
1993/1994 and include a full set of indicators for the cancer organs (54 indicators). These
results are discussed in Section D.2.2 and the main conclusions of the lower bound analysis

in life insurance continue to hold.

C.2 Sample Selection

For all three settings, I begin with years 1993-2008 (waves 2-9) of the HRS survey (sub-

jective probability elicitations are not asked in wave 1).

LTC For LTC, I exclude individuals I cannot follow for a subsequent five years to
construct the loss indicator variable; years 2004-2008 are used but only for construction
of the loss indicator. Also, I exclude individuals who currently reside in a nursing home or
receiving specialized home care. Finally, I exclude individuals with missing observations
(either the subjective probabilities, or observable covariates). For consistency, I exclude
any case missing any of the extended control variables (results are similar for the price
controls and age/gender controls not excluding these additional missing cases).

The primary sample consists of 9,051 observations from 4,418 individuals for the no
reject sample, 10,108 observations from 3,215 individuals for the reject sample, and 10,690
observations from 5,190 individuals for the uncertain sample. In each sample, I include
multiple observations for a given individual (which are spaced roughly two years apart)
to increase power. All standard errors are clustered at the household level.

In addition to the primary sample, I construct a sample that excludes those who own
insurance to assess robustness of my results to moral hazard. For this, I drop the 13%
of the sample that owns insurance, along with an additional 5% of the sample currently

enrolled in Medicaid.
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Disability For disability, [ begin with the set of individuals between the ages of 40 and
60 who are currently working and report no presence of work-limiting disabilities. Al-
though individuals are To construct the corresponding loss realization, I limit the sample
to individuals who I can observe for a subsequent 10 years (years 2000-2008 are used solely
for the construction of the loss indicator). The final sample consists of 936 observations
from 491 individuals for the no reject classification, 2,216 observations from 1,280 indi-
viduals for the reject classification, and 5,361 observations from 1,280 individuals for the
uncertain classification.” Note that the size of the no reject sample is quite small. This
is primarily due to the restriction that income must be above $70,000. As discussed in
Section _, the individual disability insurance market primarily exists for individuals with

sufficient incomes. Thus, many of these individuals enter the uncertain classification.

Life For the life sample, I restrict to individuals I can follow through the age corre-
sponding to the subjective probability elicitation 10-15 years in the future, so that years
2000-2008 are used solely for the construction of the loss indicator. Since the earliest
age used in the elicitation is 75, my sample consists of individuals aged 61 and older.
The final sample consists of 2,689 observations from 1,720 individuals for the no reject
classification, 2,362 observations from 1,371 individuals for the reject classification, and
6,800 observations from 4,270 individuals for the uncertain classification. Similar to LTC,
[ include those who own life insurance in the primary sample (64% of the sample) but

present results excluding this group for robustness.

D Lower Bound Appendix

D.1 Lower Bound Specification

Here, I discuss the construction of the lower bound estimates. I begin with a detailed
discussion of the specification for the pricing controls specification and then discuss the
modifications for the age/gender and extended controls specifications.

Aside from differences in the variables X, Z, and L, the specifications do not vary
across the 9 samples (LTC, Life, Disability + Reject, No reject, Uncertain classifications).
For the pricing controls specification, I model Pr{L|X, Z} as a probit,

Pr{L|X,Z} =& (XS +T (age, Z))

"6Ideally, I would also test the robustness of my results using a sample of those who do not own
disability insurance, but unfortunately the HRS does not ask about disability insurance ownership.
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where X contains all of the price control variables. The function I' (age, Z) captures the
way in which the subjective probabilities affect the probability of a loss. In principle, one
could allow this effect to vary with all observables, X; in practice, this would generate far
too many interaction terms to estimate. Therefore, I allow Z to interact with age but not
other variables. Note that this does not restrict how the distribution of Pr {L|X, Z} varies
with X and Z; it only limits the number of interaction coefficients. The distribution of
Pr[L|X, Z] can and does vary because of variation in Z conditional on X. Indeed, the re-
sults are quite similar if one adopts a simple specification of Pr{L|X, Z} = & (X[ +~vZ).

I choose a flexible functional form for I' (age, Z) that uses full interactions of basis

functions in age and Z:
I (age, Z) = Z a;; fi (age) g; (2)
4,3

For the basis in Z, I use second-order Chebyshev polynomials for the normalized variables,
Z = 2(Z — 50%), plus separate indicators for focal point responses at Z = 0, 50, and
100:

g0 (Z2) = Z

9 (7) = (222—1>
93(Z) = 1{Z = 0%}
94(Z) = 1{Z =50%}
g5 (Z) = 1{Z =100%}

For the basis in age, I use a linear specification, f; (age) = age (note that any constant
terms are absorbed into X /3).

I estimate 8 and {e;;} using MLE (the standard probit command in stata) and con-
struct the predicted values for Pr{L|X,Z}. Given these predicted values, I plot the
distribution of Pr{L|X, Z} — Pr{L|X} aggregated within each setting and rejection clas-
sification. To do so, I also need an estimate of Pr{L|X}. For this, I use the same

specification as above, except I exclude I' (age, Z), so that
Pr{L|X} =& (XB)

I again estimate § using MLE and construct the predicted values of Pr {L|X}.
Now, for each observation, I have an estimate of Pr{L|X, Z} and Pr {L|X}. Therefore,
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I can plot the predicted empirical distribution of Pr{L|X, Z} —Pr{L|X} in each sample.
For ease of viewing, I estimate a kernel density, using the optimal bandwidth selection
(the default option in Stata), and plot the density in Figure 2.

I then construct an estimate of the average magnitude of private information implied
by Z. With infinite data, I could construct an estimate of E [myz (Pz)|X] for each value
of X; in practice, I need to aggregate across values of X within a sample to gain sta-
tistical power. To do this aggregation, I rely on the assumption that the distribution
of Pr{L|X,Z} — Pr{L|X} does not vary conditional on age. Thus, I can aggregate
across the residual distribution to construct, for each age, the average difference be-
tween ones own probability and the probability of worse risks. I construct the residual,
r; = Pr{L|X,Z} —Pr{L|X} for each case in the data. Then, within each age, I compute
the average residual, Pr{L|X, Z} —Pr{L| X} of those with higher residuals within a given
age (i.e. for an observation with r; = x, I construct 7; = E [r;|r; > x, age]). Note that this
is where T use the assumption that the distribution of Pr{L|X, Z} — Pr{L|X} does not
vary conditional on age. I then construct the average of 7; in the sample, which equals
Emyz (Pz)|X € 0] for the given sample ©.

For the age/gender controls specification, I use the same specification as for the price
controls, but replace X with the saturated set of age/gender variables. However, for the
extended controls specification, the number of covariates is too large for a probit spec-
ification. Aside from the computational difficulties of maximizing the probit likelihood,
it is widely known that the probit yields inconsistent estimates of I' in this setting when
the dimensionality of X increases (this is analogous to the problem of doing a probit with
fixed effects). I therefore adopt a linear specification, L = X + I (age, Z) + €, to ease
estimation with the very high dimensionality of X. Under the null hypothesis that the
linear model is true, this approach continues to deliver consistent estimates of I' even as
the dimensionality of X increases. For I', I use the same basis function approximation as

used above (of course it now has a different interpretation).

D.2 Lower Bound Robustness Checks

This section presents several robustness checks of the lower bound analysis.

D.2.1 Age Analysis

First, I present estimates of the average magnitude of private information implied by Z

separately by age for the disability and life settings. Figure 6 presents the results, along
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Figure 6: Magnitude of private information by age

with bootstrapped standard errors. I also split the results separately for males and females
in disability to ensure that the results are not driven by age-based sample selection in the
HRS (the HRS samples near retirement individuals and includes their spouses regardless
of age).

As one can see, the results suggest generally that there is more private information

for the rejectees relative to non-rejectees, conditional on age.

D.2.2 Organ Controls for Life Specification

The specifications for life insurance did not include controls for the affected organ of
cancer sufferers. As a result, the main results identify the impact of private information
assuming that the insurer would not differentially price insurance as a function of the organ
afflicted by cancer. It seems likely that insurers, if they sold insurance to cancer patients,

would price differentially based on the afflicted organ. Fortunately, organ information is
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provided in the 1993/4 wave of the survey (it is not provided in other waves). Therefore,
I can assess the robustness of my finding of private information using a sample restricted
to this wave alone.

In the second column of Table A2, I report results from a specification restricted to
years 1993/1994 which includes a full set of 54 indicators for the affected organ added
to the extended controls specification. The finding of statistically significant amounts of
private information amongst the rejectees continues to hold (p = 0.0204). Moreover, the
estimate of E [my (Py)|X € ©F%°!] remains similar to the preferred (pricing) specifica-
tion (0.0308 versus 0.0338 for the primary specification). While insurers could potentially
price differentially based on the afflicted organ, doing so would not eliminate or signifi-

cantly reduce the amount of private information held by the potential applicant pool.

E Structural Estimation

E.1 Specification Details

[ approximate the distribution, f (p|X), using mixtures of beta distributions,
f(pIX) = wiBeta(a; + Pr{L|X} 1)

where Beta (11,1) is the p.d.f. of the beta distribution with mean p and shape parameter
1. Note this parameterization of the beta distribution is slightly non-standard; the Beta

distribution is traditionally defined with parameters o and 3 such that the mean is y =

[0}
atp
In the main specification, I use three beta distributions, ¢ = 1,2,3. Also, I make a

and the shape parameter ¢ = o + 5.

couple of simplifying restrictions to ease estimation. First, I only estimate two values
of the shape parameter; one for the most central beta, ¥y = ©eenira;, and one for all
other beta distributions, ¥; = Ynoncentrar (¢ = 2,3). This helps reduce the non-convexity
of the likelihood function.”” Second, I constrain the shape parameters, 1);, such that
1; < 200. This restriction prevents v; from reaching large values that introduce non-
trivial approximation errors in the numerical integration of the likelihood over values of
p (these numerical errors arise when fp (p|X) exhibits extreme curvature). Changing the
levels of this constraint does not affect the results in the LTC Reject, Disability Reject,

"TFor example, non-convexity arises because a dispersed distribution can be accomplished either with
one beta distribution with a high value of ¥ or with two beta distributions with lower values of the shape
parameters but differing values of a;.
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Life No Reject, and Life Reject samples. However, the LTC No Reject and Disability
No Reject initial estimates did lie on the boundary, 1; = 200 for the most central beta.
Intuitively, these samples have little amounts of private information so that the model
attempts to construct a very highly concentrated distribution, fp (p|X). To relax this
constraint, I therefore include an additional point mass at the mean, Pr{L|X}, that
helps capture the mass of people with no private information (note that inserting a point
mass at the mean is equivalent to inserting a beta distribution with a; = 0 and ¥; = 00).
This computational shortcut improves the estimation time and helps remove the bias
induced by the restriction 1; < 200.

In addition to these constraints, Assumptions 1 and 2 also yield the constraint Pr {L| X}
E[P|X], which requires ) _, w;a; = 0. Imposing this constraint further reduces the number
of estimated parameters. I also censor the mean of each beta distribution, a; + Pr {L| X'}
to lie in [0.001,0.999]. I accomplish this by censoring the value of a; given to observations
with values of X such that a; + Pr{L|X} is greater than 0.999 or less than 0.001. I
then re-adjust the other values of a; and w; for this observation, to ensure the constraint
> ;wia; = 0 continues to hold. If the parameter values and values of X are such that
as +Pr{L|X} < 0.001, I then define ay = 0.001 — Pr {L| X} and then adjust a3 such that
aswsy + azws = 0. In some instances, it may be the case that as = 0.001 and a3z = 0.999;
in this case, I adjust the weights ws and w3 to ensure that > w;a; = 0 (note that weight
wy is unaffected because a; = 0).

Given this specification with three beta distributions and the above mentioned restric-
tions, there are six parameters to estimate: two parameters capture the relative weights
on the three betas, two parameters capture the non-centrality of the beta distributions
(a1 and as), and the two shape parameters, Vcentral, and Yponcentrar- Finally, for the LTC
No Reject and Disability No Reject samples I estimate a seventh parameter given by the

weight on the point-mass, Wyimass-

Estimation In each of the six samples, estimation is done in two steps.”® First, I esti-
mate Pr {L|X} using the probit specification described in Section D.1. Second, I estimate
the six beta mixture parameters, {wy, ws, ai, a2, Yeentral, Ynoncentral §, along with the four
elicitation error parameters, {0, k, A, @} using maximum likelihood. As is standard with
mixture estimation, the likelihood is non-convex and can have local minima. I there-

fore start the maximization algorithm from 100+ random starting points in the range of

The bootstrapping procedure for standard errors will repeat the entire estimation process (i.e. both
steps 1 and 2) for each bootstrap iteration.
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feasible parameter values.

In addition, I impose a lower bound on ¢ in the estimation process. It is straightfor-

ward to verify that, under the null hypothesis, I have o > min {var (Z”f) — cov (Z”f, L) , \/g}
In reality, the distribution of Z is concentrated on integer values between 0 and 100%,
and in particular, multiples of 5% and 10%. In some specifications, the unconstrained
maximum likelihood procedure would yield estimates of ¢ =~ 0 and distributions of P
that attempt to match the integer patterns of Z. In other words, the model attempts
to match the dearth of Z values between 5.01% and 9.99%, and the higher frequency at
7 = 10%. By imposing the constraint o > min {var (Z"f) — cov (Z”f, L) , \/%}, these
pathological outcomes are removed. Re-assuringly, the constraint does not locally bind
in any of my samples (i.e. I find estimates of o between 0.3 and 0.45, whereas values of

var (Z") — cov (Z™, L) fall consistently around 0.2 in each setting).

E.2 Robustness

Table A3 presents the minimum pooled price ratio evaluated at other points along the
distribution of Pr{L|X} in each sample. The table presents the estimates at the 20th,
50th, and 80th quantile of the Pr{L|X} distribution. The first set of rows presents the
results for the Reject samples. The first row presents the point estimates, followed by
the 5/95% confidence intervals, and finally by the value of Pr{L|X} corresponding to
the given quantile. The second set of rows repeats these figures for the non-rejectees.
In general, the results are quite similar to the values reported in Tables 5 and 6, which

considered a characteristic corresponding to the mean loss, Pr{L|X} = Pr{L}.

E.3 Estimation Results Details

Measurement error parameters Table A4 presents the estimated measurement error
parameters. In general, I estimate values of o between 0.29 and 0.46, indicating that
elicitations are quite noisy measures of true beliefs. Roughly 30-42% of respondents are
focal point respondents, and the focal point window estimate ranges from 0 to 0.173. The
estimate of k = 0 indicates that focal point respondents choose to report an elicitation
of 50%, regardless of their true beliefs. Finally, I estimate moderate bias of magnitudes
less than 10% in all samples except the LTC Rejectees, for whom I estimate a substantial
28.6pp downward bias. Although many factors could be driving this result, it is consistent
with the hypothesis that many individuals do not want to admit to a surveyor that they

are going to have to go to a nursing home.
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Beta Mixture Parameters Table A5 presents the estimated parameters for fp (p|X),

along with the bootstrapped standard errors.

F  Selected Pages from Genworth Financial Underwriting Guidelines

The following 4 pages contain a selection from Genworth Financial’s LTC underwriting
guideline which is provided to insurance agents for use in screening applicants. Although
marked “Not for use with consumers or to be distributed to the public”, these guidelines are
commonly left in the public domain on the websites of insurance brokers. The printed ver-
sion here was found in public circulation at http://www.nyltcb.com/brokers/pdfs/Genworth Underwritin
on November 4, 2011. I present 4 pages of the 152 pages of the guidelines. The conditions
documented below are not exhaustive for the list of conditions which lead to rejection -
they constitute the set of conditions which solely lead to rejection (independent of other
health conditions); combinations of other conditions may also lead to rejections and the

details for these are provided in the remaining pages not shown here.
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INTRODUCTION

Underwriting is the process by which an applicant’s current health, medical history
and lifestyle are evaluated to determine a risk profile. The underwriter’s decision to
accept or decline an applicant is determined by matching the profile to guidelines,
which outline the limits of acceptable risk to the company.

We underwrite applicants in the age range 18-79. We do not modify the coverage
applied for, nor do we apply extra premiums. We make every attempt to issue the
desired coverage at the corresponding published premium.

The information in this manual reflects over 30 years of experience...the longest in
the Long Term Care insurance industry. While not all-inclusive, enough information is
presented to help you in most situations you will encounter. A hotline number is
included should you have questions or run into an unusual circumstance.

An appeal process is also outlined in the event you disagree with our underwriting
evaluation. We are always willing to have a second look, especially when additional
information not included in the original application file is made available.

We value our relationship with you and look forward to providing high quality service
and underwriting for you and your clients.



UNINSURABLE CONDITIONS

Acquired Immune Deficiency Syndrome (AIDS)

ADL limitation, present

AIDS Related Complex (ARC)

Alzheimer's Disease

Amputation due to disease, e.g., diabetes or atherosclerosis
Amyotrophic Lateral Sclerosis (ALS) , Lou Gehrig's Disease
Ascites present

Ataxia, Cerebellar

Autonomic Insufficiency (Shy-Drager Syndrome)
Autonomic Neuropathy (excluding impotence)

Behcet’s Disease

Binswanger’s Disease

Bladder incontinence requiring assistance

Blindness due to disease or with ADL/IADL limitations
Bowel incontinence requiring assistance

Buerger’s Disease (thromboangiitis obliterans)

Cerebral Vascular Accident (CVA)

Chorea

Chronic Memory Loss

Cognitive Testing, failed

Cystic Fibrosis

Dementia

Diabetes treated with insulin

Dialysis, Kidney (Renal)

Ehlers-Danlos Syndrome

Forgetfulness (frequent or persistent)

Gangrene due to diabetes or peripheral vascular disease
Hemiplegia

Hoyer Lift

Huntington’s or other forms of Chorea

Immune Deficiency Syndrome

Korsakoff’'s Psychosis

Leukemia-except for Chronic Lymphocytic Leukemia (CLL) and Hairy Cell Leukemia (HCL)
Marfan’s Syndrome

Medications
Antabuse (disulfiram)
Avricept (donepezil HCI)
Campral (acamprosate calcium)
Cognex (tacrine)
Depade (naltrexone)
Exelon (rivastigmine)
Hydergine (ergoloid mesylate)
Namenda (memantine)
Razadyne (galantamine hydrobromide)
Reminyl (galantamine hydrobromide)
ReVia (naltrexone)
Vivitrol (naltrexone)

Memory Loss, chronic

Mesothelioma

Multiple Sclerosis (MS)

vi



Muscular Dystrophy (MD)

Myelofibrosis

Organ Transplants, except kidney transplants

Organic Brain Syndrome (OBS)

Oxygen use except if used for headaches or sleep apnea

Paralysis/Paraplegia

Parkinson's Disease

Pneumocystis Pneumonia

Polyarteritis Nodosa

Postero-Lateral Sclerosis

Quad Cane use

Quadriplegia

Senility

Spinal Cord Injury with ADL/IADL limitations

Stroke (CVA)

Surgery scheduled or anticipated (except cataract surgery under local anesthesia)

Takayasu’s Arteritis

Thalassemia Major

Total Parenteral Nutrition (TPN) for regular or supplementary feeding or
administration of medication

Waldenstrom’s Macroglobulinemia

Walker use

Wegener’s Granulomatosis

Wernicke-Korsakoff Syndrome

. Wheelchair use

Wilson’s Disease

vii
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Table A2: Cancer Organ Controls (Life Setting)

Organ + Extended Controls

Preferred Specification (1993/1994 Only)
Reject 0.0587*** 0.0526***
s.e.’ (0.0083) (0.0098)
p-value? 0.000 0.002
No Reject 0.0249 0.0218
s.e.’ (0.007) (0.007)
p-value? 0.1187 0.3592
Difference: A, 0.0338*** 0.0308**
s.e.’ (0.0107) (0.0121)
p-value® 0.0000 0.0260
Uncertain 0.0294*** 0.0342***
s.e. . .
! (0.0054) (0.0063)
p-value? 0.0001 0.0003

'Bootstrapped standard errors computed using block re-sampling at the household level (results shown for N=1000

repetitions)

?p-value for the Wald test which restricts coefficients on subjective probabilities equal to zero

3p-value is the maximum of the p-value for the rejection group having no private information (Wald test) and the p-value
for the hypothesis that the difference is less than or equal to zero, where the latter is computed using bootstrap

% 5<0.01, ** p<0.05, * p<0.10
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