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1 Labor input as a composite service and human cap-

ital depreciation

This section provides a more elaborate model of the labor market, that reproduces the path

of labor income over an agent’s life, as postulated in equations (10) and (11). The main

difference between the baseline model and the model of this section is that the labor income

process results from general-equilibrium wage effects, rather than assumptions on agents’

endowments of labor efficiency units.

To draw this distinction, we assume that workers’ efficiency units are only affected by

aging and experience. Specifically, workers endowments of labor efficiency units evolve de-

terministically over their life according to ht,s = h (1 + δ)t−s . However, the innovation shocks

ut no longer have any effects on agents’ endowment of labor efficiency units.

Assume moreover, that labor is not a homogenous service. Instead, the units of labor

that enter the production function of final goods and intermediate goods are measured in

terms of a composite service, which is a constant elasticity of substitution (CES) aggregator

of the labor efficiency units provided by workers belonging to different cohorts. Specifically,

one unit of (composite) labor is given by

Lt =

(
t∑

s=−∞

v
1
b

t,s (lt,s)
b−1

b

) b
b−1

, (1.1)

where lt,s denotes the labor input of cohort s at time t, vt,s > 0 controls the relative im-

portance of this input and b > 0 is the elasticity of substitution. The production function

of final goods continues to be given by (3) and it still takes one unit of the composite la-

bor service to produce one unit of the intermediate good. Equation (1.1) captures the idea

that different cohorts have different skills and hence they are imperfect substitutes in the

production process. Next, we let

v
1

b

t,s ≡ (1 − φ)(
b−1

b ) qt,sh
1

b

t,s. (1.2)

Before proceeding, we note that using (1.2) inside (1.1), recognizing that in equilibrium lt,s =
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ht,s, and noting that
∑t

s=−∞ qt,sht,s = 1 implies that the aggregate supply of (composite)

labor efficiency units is constant and equal to (1 − φ) .

Since labor inputs by agents belonging to different cohorts are imperfect substitutes, we

need to solve for the equilibrium wage wt,s of each separate cohort. This process is greatly

facilitated by first constructing a “wage index”, i.e., taking a set of cohort-specific wages as

given, and then minimizing (over cohort labor inputs) the cost of obtaining a single unit of

the composite labor input. As is well established in the literature, this wage index for CES

production functions is given by

wt =

(
t∑

s=−∞

vt,s (wt,s)
1−b

) 1
1−b

.

With this wage index at hand, the cohort-specific input demands for a firm demanding

a total of Lt units of the composite good are given by

wt,s = wtv
1
b

t,s

(
lt,s

Lt

)− 1
b

. (1.3)

It is now straightforward to verify that an equilibrium in such an extended model can be

determined by setting wt = wt (where wt is given by [23]) and then obtaining the cohort-

specific wages by setting lt,s = ht,s, and Lt = (1 − φ) in equation (1.3) and solving for wt,s.

To see this, note that by making these substitutions and using (1.2) inside (1.3) leads to the

per-worker income process

wt,sht,s

(1 − φ)
= wtqt,s , (1.4)

which coincides with the labor income process in the baseline model. Furthermore by setting

wt = wt, the market for total (composite) labor units clears by construction, whereas the

cohort specific wages implied by (1.4) clear all cohort specific labor markets, since they

satisfy equation (1.3) for all markets.

4



2 A multi-sector extension

It is straightforward to extend the model to allow for multiple sectors, with potentially

different degrees of innovation within each sector. Such an extension can help illustrate that

even when technological progress is different accross industries, the value premium is likely

to be particularly salient within industries, as it is in the data.

To introduce such an extension, we modify the baseline setup, so that the production of

the final good is given by

Yt = Zt
(
LFt
)1−(α1+α2)

(∫ At

0

xα1

j,tdj

)(∫ Bt

0

x̃α2

j,tdj

)
, (2.1)

where α1 > 0, α2 > 0 , α1 + α2 < 1, and xj,t denotes the intermediate input j in sector A

and x̃j,t denotes the intermediate input j in sector B. (To simplify the exposition and avoid

inessential notation, specification (2.1) implicitly sets the weights ωj,t on the intermediate

goods equal to one). At and Zt evolve as in the baseline version of the model and Bt evolves

similarly to At, i.e.,

logBt+1 = logBt + ũt+1,

where ũt+1 is a non-negative random variable that captures technological advancements in

sector B. We allow the shocks ut and ũt to be correlated. At each point in time t, the

representative final-good firm chooses LFt , xj,t, and x̃j,t so as to maximize its profits

πFt = max
LF

t ,xj,t,x̃j,t

{
Yt −

∫ At

0

pj,txj,tdj −

∫ Bt

0

p̃j,tx̃j,tdj − wtL
F
t

}
, (2.2)

where pj,t and p̃j,t are the prices of intermediate goods in sectors A and B, respectively, and

wt is the prevailing wage (per efficiency unit of labor).

Production of intermediate goods (in either sector) still takes the simple form described

in the paper (i.e., it takes one unit of labor to produce one unit of intermediate good j,

irrespective of the sector). Accordingly, the total labor demand of both sectors is

LIt =

∫ At

0

xj,tdj +

∫ Bt

0

x̃j,tdj. (2.3)
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Finally, to simplify matters, we assume that new firms are specific to sectors and can

own only sector-A or sector-B blueprints (but not both). Differentiating (2.2) leads to the

following two first-order conditions with respect to xj,t and x̃j,t.

xj,t =


 pj,t

α1Zt (LFt )
1−(α1+α2)

(∫ Bt

0
x̃α2

j,tdj
)




1
α1−1

, (2.4)

x̃j,t =


 p̃j,t

α2Zt (L
F
t )

1−(α1+α2)
(∫ At

0
xα1

j,tdj
)




1
α2−1

. (2.5)

Maximizing the profits of intermediate-good firms leads to the same first-order condition as

in the baseline version of the model, namely:

pj,t =
wt

α1
, (2.6)

p̃j,t =
wt

α2
. (2.7)

Combining (2.4) with (2.6), (2.5) with (2.7) and using the definition of Yt leads to

xj,t =

[
wt

α2
1Yt

(∫ At

0

xα1

j,tdj

)] 1
α1−1

(2.8)

x̃j,t =

[
wt

α2
2Yt

(∫ Bt

0

x̃α2

j,tdj

)] 1
α2−1

(2.9)

Since all intermediate goods within a sector face the same demand curve and the same

cost structure, we look for a symmetric equilibrium, in which xj,t = xt and x̃j,t = x̃t. Under

this supposition,
∫ At

0
xα1

j,tdj = Atx
α1

t and
∫ Bt

0
x̃α2

j,tdj = Btx̃
α2

t , so that equations (2.8) and (2.9)

simplify to

xt = α2
1

(
Yt

wt

)
1

At
, (2.10)

x̃t = α2
2

(
Yt

wt

)
1

Bt

. (2.11)

Finally, the final-good firm’s first-order condition with respect to labor gives (1 − α1 − α2)Yt =

wtL
F
t , which implies that

Yt

wt
=

LFt
1 − α1 − α2

. (2.12)
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Labor-market clearing can be expressed as

LFt + Atxt +Btx̃t = (1 − φ) . (2.13)

Using (2.12) inside (2.10) and (2.11), and then using the resulting expressions inside (2.13)

and solving for LFt leads to

LFt =
1 − α1 − α2

1 − α1 − α2 + α2
1 + α2

2

(1 − φ) . (2.14)

Combining (2.10), (2.11), (2.12), and (2.14) gives

xt =
α2

1

1 − α1 − α2 + α2
1 + α2

2

1 − φ

At
, (2.15)

x̃t =
α2

2

1 − α1 − α2 + α2
1 + α2

2

1 − φ

Bt

. (2.16)

Combining (2.14) with (2.15) and (2.16) yields

Yt =
(1 − φ) (1 − α1 − α2)

1−(α1+α2)
α2α1

1 α2α2

2

1 − α1 − α2 + α2
1 + α2

2

ZtA
1−α1

t B1−α2

t . (2.17)

Equation (2.17) states that output is proportional to ZtA
1−α1

t B1−α2

t . From a practical

perspective, this implies that the model with multiple sectors behaves like a single-sector

model, where the technology shock ut is replaced by a weighted sum of the technology

shocks to the two sectors.1 In particular all the conclusions regarding the displacement

effect are unaltered, with the understanding that the shock ut in the baseline model is now

an appropriate weighted average of the shocks in the two sectors.

Even though the extension to multiple sectors adds little in terms of the model’s general-

equilibrium properties, it helps clarify that even when technological progress is concentrated

in one sector, most of the cross-sectional differences in returns manifest themselves within

1To see this, note that

∆ log Yt = εt + (1 − α1)ut + (1 − α2) ũt.

Defining u∗t = (1 − α1)ut +(1 − α2) ũt shows that the output growth in the multisector model is identical to

the one in the single-sector model, with u∗t defined appropriately to capture the total effect of all displacement

shocks.
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a sector, rather than across sectors. To see this, note first that per-firm profits in sector A

and B are given by

πAt = α1 (1 − α1)

(
Yt

At

)
,

πBt = α2 (1 − α2)

(
Yt

Bt

)
.

Now suppose that technological advancements are concentrated in one sector (say, sector

A), so that ut is random, but ũt is a constant. Take any stock in sector B. Since ũt is non-

random, there will be no difference between the rates of return of different firms in sector

B.2 By contrast, stocks in sector A exhibit a non-trivial value premium, with “pure” growth

options in sector A having a lower expected return than sector-B stocks (since they act as a

hedge against the u-shock) and pure value stocks in sector A having higher expected returns

than sector-B stocks. As a result, the “HML” factor in this economy is driven exclusively

by return differentials within sector A.

3 More general endowment processes

We simplify some aspects of the model for tractability. One of the stylized assumptions is

that innovating agents receive their blueprints “at birth.” In reality, it takes time to start a

new firm, and each cohort of agents does not innovate simultaneously. Moreover, innovation

shocks ut are more likely to follow a moving-average process rather than being independent,

as we assume. We provide a simple example to illustrate why such frictions and perturbations

2To see this, let Ra
t denote the return of a “pure” asset in place in sector B, and Ro

t the return on a

“pure” growth option in sector B. The definitions of Ra
t and Ro

t in the paper imply that logRa
t+1 − logRo

t+1

is a non-random constant. Indeed, it is zero, since

1 = Et

(
elog Ra

t+1
ξt+1

ξt

)
= Et

(
elog Ra

t+1−log Ro

t+1 × elog Ro

t+1
ξt+1

ξt

)

= elog Ra

t+1−log Ro

t+1 × Et

(
elog Ro

t+1
ξt+1

ξt

)
= elog Ra

t+1−log Ro

t+1

and hence logRa
t+1 = logRo

t+1.
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of the baseline model are unlikely to affect our conclusions about the long-run properties of

the model-implied asset returns.

Suppose that all agents are born as workers with an initial endowment of labor efficiency

units of h (1 − φ) qs,s. Furthermore, suppose that a fraction φ of them become entrepreneurs

in the second period of their lives and permanently drop out of the workforce, whereas the

ones that remain workers have an endowment of labor efficiency units equal to the baseline

model from the second period of their lives onward, namely h(1 + δ)t−sqt,s for all t ≥ s+ 1.3

Finally, assume that agents can only access financial markets in the second period of their

lives, while in the first period they consume their wage income. These assumptions capture

the idea that an agent’s “birth” cohort and the date at which that agent innovates may not

coincide. Moreover, exclusion from markets captures in a stylized manner the idea that the

agent cannot smooth consumption between the “birth” date and the innovation arrival date.

Repeating the argument of Section 3.2, the equilibrium stochastic discount factor in this

modified setup is

ξt+1

ξt
= β

(
Yt+1

Yt

)−1+ψ(1−γ)

υ̂(ut+1, ut)
−γ,

where

υ̂(ut+1, ut) = (1 − λ)−1

(
1 −

λyt

Ct

)−1

1 − λ (1 − λ)

∑

i∈{w,e}

φi
cit+1,t

Ct+1

− λ
yt+1

Ct+1




and yt denotes an agent’s initial wage income. Furthermore, the same reasoning as in the

proof of Lemma 4 implies that the variance of the permanent component of log consumption

cohort effects equals V ar (υ̂(ut+1, ut)).

This simple example illustrates the fact that the frictions affecting agents’ life-cycle of

earnings change the transitory dynamics of cohort effects, returns, and the stochastic discount

factor. Such frictions do not alter our main qualitative conclusion that the permanent

component of cohort effects captures the permanent component of the displacement factor,

as reflected in the stochastic discount factor.

3Note that since agents are born with h (1 − φ) qs,s rather than hqs,s efficiency units, the total supply of

labor efficiency units remains equal to the baseline model.
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Data ψ = 1 κ = 0.7 κ = 0.7

baseline modified

Aggregate (log) Consumption Growth rate 0.017 0.017 0.017 0.017

Aggregate (log) Consumption Volatility 0.033 0.032 0.032 0.033

Riskless Rate 0.010 0.057 0.025 0.017

Equity premium 0.061 0.046 0.026 0.033

Aggregate Earnings / Price 0.075 0.144 0.091 0.110

Dividend Volatility 0.112 0.107 0.078 0.104

Correl. (divid. growth, cons.growth) 0.2 0.2 0.293 0.155

Std (∆αperm
s ) 0.023 0.028 0.023 0.024

cov(∆αperm
s ,logRg−logRa)
var(∆αperm

s )
3.92 3.866 5.370 6.766

Std (∆wperm
s ) 0.022 0.023 0.023 0.024

Earnings / Price 90th Perc. 0.120 0.153 0.110 0.140

Earnings / Price 10th Perc. 0.04 0.065 0.034 0.044

Average Value premium 0.081 0.068 0.067 0.079

Std (Value Premium) 0.120 0.111 0.122 0.161

E (logRg − logRa) 0.118 0.096 0.114

Table 1: Robustness Checks. The columns titled ψ = 1 and κ = 0.7 display results when the

parameters ψ and κ are set equal to 1 and 0.7 respectively, while the rest of the parameters

are kept at their baseline values (γ = 10). The last column displays results assuming that

κ = 0.7, χ = 5, ν = 0.06, ρ = 0.8, ω = 0.87 and the rest of the parameters are kept at their

baseline values.

4 Robustness checks with respect to the parameters in

the baseline model

Table 1 reports results from some simple robustness exercises. The column titled ψ = 1 helps

isolate the effect of habit formation. This column shows how results change in the case where

agents have standard constant relative risk aversion preferences (γ = 10). Comparing this
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table to Table 6 in the paper, it is apparent that the absence of habit formation increases

slightly both the equity and the value premium. However, this comes at the cost of also

increasing the riskless rate4 and as a result all the earnings-to-price ratios. The next column

(κ = 0.7) reduces κ to 0.7 while keeping the rest of the parameters unchanged. Recall that

κ reflects the fraction of new blueprints accruing to new firms owned by arriving agents,

while (1 − κ) accrues to existing agents. In the baseline case scenario we choose κ = 0.9.

We consider this a plausible value for the following reason: In a fully specified endogenous-

innovation model with capital, where factors of production in the innovation sector are

compensated for their marginal product, κ would capture the share of human capital, labor

and skill in the innovation process (as opposed to the share of capital operated by pre-

existing firms). Assuming that education, entrepreneurial skill and human effort are the

most important scarce factors in the innovation process, one would expect κ to be close to

1. (For instance, in the seminal Romer model, labor is the exclusive factor of production

in the development of new ideas). However, to examine the robustness of the results to

this assumption, we also examine what happens when we choose these income shares to be

similar to aggregate income shares in NIPA data. To that end we choose κ = 0.7. The next

to last column reports results when all other parameters are kept at their base values, while

the last column reports what happens when the rest of the parameters are also modified in

order to match the volatility and the correlation of dividends. As can be seen, even though

the results are slightly weaker when κ = 0.7, the model retains its power to explain a large

fraction of the observed moments in the data.

4Inspection of equation (31) helps with the intuition behind this result: As ψ increases from 0 to 1, the

exponent of Yt+1

Yt

decreases from −1 to −γ, resulting in a higher volatility of the pricing kernel, but also a

stronger negative drift of the (log) stochastic discount factor.
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