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1 A two-country, one-good, two-asset model

1.1 Production and investment

There is one good produced in two countries, Home and Foreign. The produc-

tion uses a constant returns to scale technology combining labor and capital:
Yie = Ai K <Ny, i=HF (1)

where 7 denotes the specific country, with the Home and Foreign country denoted
by ¢ = H and ¢ = F respectively. Y; is the output in country i, A; is an exogenous
stochastic productivity term, K; is the capital input and N; the labor input. A
share w of output is paid to labor, with the remaining going to capital. For
simplicity we fix the labor input to unity. The log of the productivity term follows

an autoregressive process:

Aipr1 = PQit + €41 (2)

where a;; = In(A;;) and €, follows a N(0,0?2) distribution, uncorrelated across
countries.
While the labor input is set, the capital stock can be adjusted:

Kiy1=01-0)Ki++ I (3)

where ¢ is the depreciation rate and I; is investment.

The capital is built by investment firms that transform consumption goods
into capital goods at a cost. Consider an investment firm in the Home country.
In period ¢ it produces Iy, units of capital, which it sells them at a price Qp,
by using I units of the consumption good. Production entails a cost, and the
profits of the investment firm are:

¢ (Int — 6Kpp)”

Ig,— I, — =2 4
Quiloy Ht g K (4)

In (4) we assume that the individual firm takes the aggregate capital stock Ky,
that enters the adjustment cost as given. We assume that the investment firm is a
price taker, so the maximization of profits with respect to/y; implies the standard

Tobin’s Q) relation:
t— 0Kmy

Iy
=1 : 5
Quy +¢§ Ky (5)



The consumption good is produced by production firms who buy capital from
the investment firms. The expected discounted profits of a Home production firm

are:

o0
H 1-w w
B> Duis [Anaes Kirgt Nitivs = WersNuaes = QuasslHags)
s=0
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where Dy, is the stochastic discount factor between time ¢ and ¢ + s. Recalling
that the labor input is set to one, the first order conditions with respect to K ;1511

and [ are:

0 = EDyiisii(l—w) Avs1Kgen
—EfDgii s + (1= 0) B Dy s missnn
0 = —EfIDH,tJrsQH,Hs + EtHDH,tJrs)\H,Hs

Setting s = 0 we get Qu; = Ag¢ and:

1 — EtH Dg,tJrl
Hit

exp [ruer1] = (1 —w)explamsr — wkpii1 — qugl (6)

Ry

+ (1 —6) exp [qri+1 — qm ]

where Ry 441 is the rate of return on Home capital, and lower case letters denote
logs: Tpir1 = In[Rysy1] . We get a similar expression for the rate of return on

Foreign capital:

exp [Tpr1] = (1 —w)explapr — wkripr — qryl (7)
+ (1 —0) exp [qgri41 — qr4]
The first order condition with respect to labor implies that Wy ;s = wAp ;1 s K }ft“jrs

The dynamics of investment are driven by the Tobin’s Q relation (5) and the

capital accumulation relation (3):

ex 1
exp kg1 —kuy = 1+ % -
ex 1
exp [kpir1 — kpy) = 1+ % o



1.2 Consumption and portfolio choice

We consider a two period overlapping generation framework. Agents work only
when young and consume in both periods of their lives. They face two decisions:
how much to save to fund their consumption, and in which assets to save. Agents
in each country can invest in Home and Foreign equity (claims on capital) which
yield the returns (6) and (7). While agents can invest in equity abroad, this entails
a cost. Specifically, agent j in the Home country investing at time ¢ in the Foreign
country receives only the return at time ¢ + 1 times an iceberg cost exp[—71].
Similarly, agent j in the Foreign country investing in the Home country receives the
returns times an iceberg cost exp[—Tf J ]. The transaction costs represent a simple
way to capture the hurdles of investing abroad, reflecting the cost of gathering
information on an unfamiliar market for instance.

The transaction costs can differ across various agents and across countries.
Fach agent j observes the cost on the future return at the time when she makes
her portfolio choice. She can only observe her own cost of investing abroad, not
the average cost faced by agents in her country. We denote the average cost faced

by Home agents by 77, and the average cost faced by Foreign agents by 7. These
costs are randomly distributed around a mean 7:
H _
(Tt 7') /T - N ( 0

(rF — 1) Jr 0 ) (10)

where fo2 is the variance of Home and Foreign international transaction costs. We

1 -1
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assume that the costs are perfectly negatively correlated, so the average transac-
tion cost is constant (this is done for simplicity and does not alter our results).
For convenience the variance is expressed relative to the variance of productivity
innovations in (2). In period ¢ a Home young agent j invests a fraction zj;, of her
wealth in Home equity, and a fraction 1 — z;; in Foreign equity. The overall real
return on her portfolio is then:

exp [Tfﬁj] = 2t €XP [Pra1] + (1 — zmj1) exp [rp,tﬂ — Tfj] (11)
Similarly for the return on a Foreign agent’s portfolio is:

exp [Tff;j} = ZFjt €Xp [TH,t+1 - Tfj] + (1 = 2pjt) exp [rpesa] (12)

We define the average portfolio shares of Home and Foreign investors as:

1 1
ZH Z/ ZHj,tdj RFt Z/ ZHj,tdj (13)
0 0



A young Home agent j at time ¢t makes consumption and portfolio decisions to

H 1—v Hi 1—v
)’ (em)
1o, PRI

maximize

where C’ ' denotes the consumption when young at period ¢, and C’ ir1 denotes
consumptlon when old at period t + 1. E, A7 denotes the expectations from the
point of the view of the Home agent j. The income of a young agent is given by

the wage wy; = wAp: (K H,t)l_w. The intertemporal budget constraint is then:
Cottr = (wAm (K )™ = € ) R (14)

The first-order conditions for consumption choice is the standard consumption
Euler equation that links the ratio of marginal utilities of consumptions to the real

interest rate:
(w exp [aHt +(1—w)kus — cft} — 1) = ﬁEf{J exp [(1 —9) rfﬁj} (15)

The first-order conditions for portfolio choice is the portfolio Euler equation that

equalizes the expected discounted returns of all assets:
Bl exp [rinis — ] = Bl exp [rm— 19 —tf] (10
The corresponding relations for a Foreign agent are:
(w exp [aFt +(1—w)kpe — Cy ] - 1> = ﬁEtFJ exp [(1 -) Tfflj] (17)

and:

Fj Fj F Fj Fj
B, exp [TH t+41 — T¢" — 77{4}#] = E; 7 exp [T’F,t+1 - 77”?#1]] (18)

1.3 Private information

Agents receive private signals about productivity innovations in the next pe-
riod. The signals received by a Home agent j about the log of Home and Foreign

productivity innovations are

H,H H,H . HF HF
Vi = EHu41 T €5y ; Vi = EFi1 T € (19)

Each signal consists of the true innovation and an error specific to the agent. These

errors are normally distributed with mean zero across agents in a given country.
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The variance of errors across Home agents for Home and Foreign productivity are

U%L g and U%L 5 respectively. Similarly, a Foreign agent j receives the signals

F.H
V-

FH . F.F
J;t j

= Emp+1 Tt €y ;o

it = €F,t+1 + Ef%F (20)

The variance of errors across Foreign agents for Home and Foreign productivity
2 2 :
are oy o and oy ; respectively.

We assume that agents receive a better signal about domestic productivity:
oy <0 p
1.4 Asset and goods market clearing

The clearing of the Home equity market requires that the value of Home cap-
ital at the end of the period matches the holdings of Home capital in investors

portfolios:

exp (gt + K11 (21)
= / <w exp [am: + (1 — w) k4] — exp [Cf,f]) 2mjdj

+/ (w exp [apt + (1 — w) kpt] — exp [cﬁ]) Zpjidj
Similarly, the clearing of the Foreign equity market requires:

exp [qr: + kg1 (22)
= / (w exp [amt + (1 — w) kgt — exp [Cfg]) (1- ZHj,t) dj

—I—/ (w exp [ap: + (1 — w) kpy] — exp [cﬁD (1 —zpj1)dj
Adding up (21) and (22), the value of worldwide capital matches world wealth:

exp (gt + krat1] + exp [qre + kppg]
= wexplag + (1 —w) kg +wexpap: + (1 — w) kpyl

—/exp [C;{g] dj — /eXp [cjﬂ dj

The demand for the consumption good at time £+ 1 consists of the consumption

of young agents in both countries, C’fﬁl and C’i i 11, the consumption of old agents

in both countries, C’OHj‘H and C’f; t]+1 We assume that the transaction cost on equity
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returns abroad is paid to brokers who fully consume it. Similarly the profits of
investment firms are paid to the owners of these firms who fully consume their
earnings. In addition to consumption, resources are used to transform consumption

goods into capital. The various uses of output add up to world production:

exp [Ymi4+1) + €xp [Yr41]

= /exp [cifﬂ] dj + /exp [C;{H} dj + /exp [cfgﬂ} dj + /exp [CZ{H} dj

+ /(1 — ZmHjt) (W exp lag: + (1 — w) k] — exp [Cng exp [rr41] (1 — €Xp [—7'

Hj
t

+ / ZFjt (W exp [ap; + (1 — w) kry] — exp [Cﬁ]> eXPp [1',141] <1 - oxXp [_Tfj}> 4

I — K 1
+£ H’tHK it |:IH,t+1 3 (1 — 5KH,t+1):|
Hit+1
I — 0K 1
+£ F’tHK s []F,tﬂ 3 (Ipps1 — 6KF,t+1):|
Fit+1
§ T — 0Kpi)? £ (Ippsr — 0Kpe1)?
I > El El I > ) El
Tl 2 Ky 1 Tim 2 Kri1

(23) is redundant. Using the output (1), the consumer budget constraint (14), the
Tobin’s Q relation (5), the portfolio rates of returns (11)-(12) and the asset market
clearing conditions (21)-(22), (23) becomes:

exp [amr1 + (1 — w) kg pia] +exp lapia + (1 — w) kpgsa]
= /exp [cgfﬂ] dj + /exp [cﬁﬂ} dj
+exp [qut + km 1] €xp [Ta ] + exp [gre + kpiga] exp [1rea]
+exp [qm,i+1] (exp [km 2] — (1 — 6) exp [kars41])
+exp [qrr1] (exp [kpra] — (1= 0) exp [kpei1])
Using the return on Home and Foreign equity (6)-(7), and the asset market clearing
conditions (21)-(22) at time ¢ + 1 shows that this relation is redundant.

A useful definition is the worldwide average of portfolio shares, and their cross-

country differences:

ZHy = / 2 dj ; 2R = / 2pjedy (24)

A . D __
S ) [ Hit+ ZF,t] ; 2y = ZHt — RFt

[)a

(23)



2 Expansion of the model

2.1 Steady state

The model is expanded around a zero-order allocation where productivity is
normalized to unity: ar (0) = ap (0) = 0. (8) and (9) imply that the asset prices
are unity: gy (0) = gr (0) = 0.

As the transaction cost 7 is second order, (6)-(7) and (11)-(12) imply that all

zero-order rates of return are:
exp [r (0)] = (1 —w) exp [-wk (0)] + (1 — )
The consumption Euler relations (15) and (17) imply:
(wexp [(1 = w) k(0) = ¢, (0)] = 1)" = fexp[(1 =) r (0)]
The sum of the asset market clearing conditions (21)-(22) implies:
exp [k (0)] = wexp [(1 —w) k (0)] — exp [c, (0)]
These three relations lead to a non-linear solution for the steady state capital:
(wexp [~wk (0)] = 1) = B[(1 — w)exp [~wk (0)] + (1 =48)]" " (25)

We define the propensity to consume of young agents as:

exple, (0)] _  exple, (0)]
exp[w (0)]  wexp[(1 —w)k(0)]

Cc =

Notice that the heterogeneity in zero-order portfolio choice does not lead to
any heterogeneity in zero-order consumption, as all young agents face the same
zero-order wage and returns.

The clearing of the Home equity market (21) gives the value of the average
portfolio share (24):

24 (0)=0.5



2.2 Return on equity

We now write approximations around the zero-order allocation outlined above.

We take cubic approximation of the log of (6):

raie1 = In[(1 —w)explamiyr — wknir1 — que] + (1 —0) exp (g1 — qre]
= 1r(0)+ (1 —ry) [ams1 — Wkm 1] + ToQmis1 — qmye
g (1 —14)

2
+1—27“q

6

Qa1 — apen + wkp ]’ (26)

re (1 —71y) [quts1 — Qi1 + wkH,t+1]3

where:

1-9
T 1= w)exp [~wk (0)] + (1 —9)
Similarly (7) is expanded as:

re = 1(0)+ (1 —7y) [ari1 — whkpps1] + roqre1 — qry
ro (1 —1
% [qpe+1 — apess + whkpea]” (27)
1—2r
+ Lrq (1= 1¢) lgpes1 — apes1 + wkp,t+1]3

6

For a variable 2 we define the worldwide average 24 and cross country difference
4 as:

2 =05 (zy + xp) : P =ay — g (28)

=y = 4 + 0527 ; Tp = 4 — 0.527



(26)-(27) can then be written as:

THt+1 = T (0) + [(1 -r ) [at+1 Wkt+1] + Tth-H Qﬂ
1
"’5 [(1 — 1) [at+1 - Wkg-l} + Tthﬂ — 4 }

T (1—r,) [[qA

1 2
5 t+1 at+1 +Wkt+1} 2 [qgrl at+1+Wkt+1]:|

_ 1 3
6 9 (1—ry) [[qﬁu at+1 + Wktﬂ] + B [qgrl at+1 + Wkt+1}:|
TFt+1 = T (0) + [(1 - Tq) [atA+1 - szé&—l] + quﬁi—l - qﬂ
1
9 [<1 ) [atDﬂ - wk‘ﬁJ + qutl?u - QtD}

LT (1—r,) {[qA

1 2
A —afy, +wkfy,] — 5 [ — at + Wk’t+1]]

1 3
6 (1—=rg) [[qil at+1 + Wkt+1] ) |:q£i-l at+1 + Wkt+1}}

Taking the average of these relations, up to the quadratic terms, we write the

average rate of return as:

iy = 05 (e + rE)
= 7(0) + [(1 = rg) [afsy — whila] + 719041 — 4] (29)
re (1 —1,) 1 )
+- 9 : [qﬁkl apiy +Wkt+1] + 1 [af1 — afy + wkf ]

Taking the difference of these relations, up to the quadratic terms, we write the

excess return on Home equity as:

€rev1 = THi+1 — TEt+1
= [(1 ) [aﬂrl — wkﬁl] + rqqgrl — th] (30)
+7g (1 —14) [qﬁrl - a’f—‘rl + Wkﬁu} [thﬂ aly + Wkt+1}



2.3 Portfolio return

Next, we write quadratic approximations of the portfolio returns. (11) is writ-
Hj

ten as (recalling that the friction 7,7 is order two and above):

rfjﬁj = In [ij,t exp [ru1] + (1 — zmjt) exp |:TF’H_1 — TfjH
= r (0) + ZH]‘ (0) TH,t+1 + (1 — ZH]‘ (0)) (rF,t—i-l — Tfj> (31)
zri (0) (1 — zg; (0
O O) o

2

where erp; = rg 1 — rpgr. Similarly, (12) is written as:

rfﬂj = 7(0) + zp; (0) <7°H,t+1 - Tfj) + (1 =21 (0)) rre+ (32)

L2 (0) (1= 2 (0)

9 [ert+l]2 + Zpjt€Te41

2.4 Investment and asset market clearing

A quadratic approximation of (8) and (9) yields:

—1
kEagyr —kpy = In (1 + %)
1 16—-1
- g T 5652_ (qrs)”
1 16 -1
kpea —kpe = EQF,t + 5_5 2 (qr2)”

Using (28) we take the worldwide average of these relations, as well as their dif-

ference, to write:

A A
kt—i—l - kt -

£-1 A2 1 D)2
= )+ @) )
-1

52

MmN

kb, — kD = a'q’ (34)
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The sum of the market clearing conditions (21)-(22) is expanded as:

1 1
g+ kit g {(q{* k) + 7 (@ + kﬁl)z]

4
1 c
= 1_E[af+(1—w)kﬂ—1_écjt
]_ ]_ A A 2 ]. D D 2
+——— (o + (1 =w) kM) + = (af + (1 —w) k) (35)
1—¢2 4
c 1 A2 1, p2 c 1 i P
S [(cyt) +Z(cyt)} LD+ D (o)
where:
ol = /cfﬁdj ; c;;—/cg{dj
1
= §[Cgt+65t} P O =t — Gy

I N G R A R S O B ) B A

A linear approximation of the difference between the market clearing conditions
(21) and (22) leads to:

1 c ; ,
R e R (R ) [ U BT

+/ <1 i ~are + (1= w) kry] - 1%5051) (22F;. (0) — 1) dj36)

+42

where:
224 =0.5 |:/ ij,tdj +/2Fj,tdj:|

2.5 Consumption Euler equations

A quadratic approximation of (15) yields:

Y ], 1(y—29) Hj]?
1_¢ [am + (1 — w) kH,t — Cy7,5]:| + m [am + (1 — w) kH,t — Cy,g
. 1 12
= B |-+ g -y ]|
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Similarly (17) is approximated as:

Fj 7(y -9 Fil?
1_z [apt + (1 — w) kﬂt — Cyéi| + m [apt + (1 — w) kﬂt — Cy’%
. . 1 12
= B0 |-+ o )]

We average these relations across all agents in each country. Using (31)-(32)

and dropping terms of order three and above, we write:

2l (k) 4 5 Lo+ - wP) |+ g

1—¢ 2 2
=0 [ [lof + @ -]+ 5 [af + (0 - @kP] = (e + 5ep)]” ]
2(1 - ¢) +D{ (c)
S s T e R ] i
+%Et Mere]® + 2o Bl eri

1—~)? } 221 (0) — 1 .
+—< 27) /Ef] |:T£F1+—HJ(2) 67”t+1] dj

where we used the fact that the second order component of 717 is the same for all.

Similarly for the Foreign country:

7 [[af F (=] = 3 [af + (1 - wkP] - [c;‘t - chH

1—¢ 9 vt
10— [ [lait+ @ =kit] = § [P + (1= k] = (cfh — 4e)]’
2(1—¢)° +DF ()

B rh + 2P B en g —ap (007 ]
2O (12 (0) ’

= (1—7)/

1— ) . 2215 (0) — 1 2
+< 27) /EtFj [Tﬁr1+—ZFJ <2) 67“t+1} d]

Fj 2 Fj
E;7 eri)” + zpj By T eri
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Taking the worldwide average of these relations, we write:

B [atA (l—w)ktA—c;]

1—c¢
Y(y -0 2 1 2
+m |:2 [atA + (1 — w)kf — C;jt} + 5 [atD + (1 _w)kf) - Cﬁ} :|
T(v—0)
+m [Df (¢) + Df (c)]
Hj i+ 2ZH](O) Yer g
1 fEt 21;(0)(1-21,(0)) 9 ]
_ 1=y +—2 [67’t+1] + ZHjteTt41 (37)
2 +fEF] t+1 _|_ Mert_’_l d
2r; z ]
N e 100 (0)(12 r ) lerei1]” + 2 e
1—
—T/Y (1 — P (0)) T
) 0y 2
(1—7~)° JEY [rféu + ZZHJ(O) 167"zt+1] dj
4 +fEF] [ T+ QZFJ( = 67“t+1] dj
Taking the cross-country difference of these relations, we write:
7 [a + (1 —w)kP —cl]
1—ctt Lo
—C
P20 [t (- o = ] [of + (1= kP — ]
T(v—79
+m [DH( ) — Df (Cﬂ
o iy 4 Oy 0
[ E; 211;(0) (1-211,(0)) 9 J
= [ere]” + zmjseri
= (1-7) A 2275 (0)—1 (38)
gFi Tiv1 T — 5 €41 di
- f t ZFj(O)(l—ZFj(O)) 2 J
= [erg1]” + zpjerin

(1-— 7)2 / EH] [Tt+1 + meﬁﬂ] dj
— 2
2 -/ E;’ [Tt+1 + 22Fjé )_lert+1} dj
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2.6 Portfolio Euler equations
2.6.1 General form

A cubic approximation of (16) yields:

0 = EtHjeT'tJrl + Tflj
Lomj|la |1 piti] a1 Hj piii]”
+§Et T+ STt T Ty T T T T T T

1 4 [ 1 uil? 1 il
+6Et ! [Tﬁl + 5Tt 77“541]] - 7"211 T iy

Similarly (18) is expanded as:

Fj Fj
0 = E/7eriy—1,°7
i 2 2
Lori {4 1 Fj p,Fj a1 p,Fj
+§ t Tiy1 + §€Tt+1 T AT | T | Tl — 567’t+1 — VT

1 [ 1 o 3 1 o 3
+6Et ! |:T24+1 + 56Tt — Wf’ﬂj] - 7“Z4+1 5T T vy

Rearranging, these relation becomes:

0 = EtHjerHl +Tfj
1 . . . .
—inJEf{’enH + Eg{] (rﬁH — yrfjgj) (eTtH + Tfj) (39)
1 ... N2 1 A
+—EtHJ (Té&—l - ’YTfﬁ]> eryy1 + —E{{] [ertJrl}g
2 24
and:
0 = EtFjerHl - Tfj
1 . . . .
—ETfJEfjertH + Efj <TZ4+1 — vrff?) (ertﬂ — Tf]) (40)

1 .. N2 1 .
+§EtFJ (7"211 - ’erfl]> €ryy1 + ﬂEf] (ert+1)3

2.6.2 Second order terms

The first-order terms of (39)-(39) imply that first order expected returns are

zero for all agents:
0= [EtHjertH] (1) = [Efjertﬂ} (1) (41)
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Turning to the second order terms of (39)-(39), using the portfolio returns (31)-
(32). We write:

0 = [EtHjertH] 2)+7+(1—-7) [Efjrﬁlert+1} (2)

2z (0) — 1 ;
2OV g ] (2
0 = |:EtFjeTt+1] 2)—-7+(1-17) [EtFjTﬁH@TtH} (2)
2zr; (0) — 1 ;
2O e e 0] @
The zero-order portfolio share for a Home agent is then:
1 [EfjeTtH] 2)+7 1_ y [E{Ijrﬁﬁ?“tﬂ] (2)
21 (0) = 5 + : + ‘ . (42)
/ 2 Hj 2 Hj 2
V[ era?| @ 7 B ern)] @)

Similarly for a Foreign agent:

1 |:EtFj6Tt+1i| (2) - T 1 — v [EfjrﬁleTt+1_ (2)

PO e [ ] @

We show below that the second-order variance of the excess return is the same
for all agents: [EtHj (ertH)Q] (2) = [Eff (emlﬂ 2) = [Ei(eri1)?] (2). For
convenience we define the following measures of average expectations across Home

(43)

agents and Foreign agents:
Bl = [EMWla 5 Bl )= [ED 4

Integrating (42)-(43) across agents in one country and combining we get, as 2 (0) =
0.5:

0 = [Effersa] (2)+ (1 =) [Efr]eria] (2) (44)
+ [Eferia] (2) + (1 —7) [Efrf\eria] (2)

and:
27 [EtHert+1] (2) - [EtFertJrl] (2)
v [Ei (erin)’] (2) v [Ee(ere1)?] (2)
+1 - [Eﬁrﬁlert+1} (2) - [EtFTZiﬁTtH] (2)
Y [Et (67}4_1)2} (2)

20) =

(45)
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2.6.3 Third order terms
Take the third order terms of (39)-(39), using (41):
0 = |:EtHje7't+1i| (3) + Ty (3) + [E ’ (Tt+1 i >€7”t+1} (3)
. 1 . 2
b [B9 (r = )] ) 5 [ B9 (s =) ]
1
57 [E leren)’] )

and:

0 = [EtFj@TtH} (3) — Tfj (3) + [E 7 (Tt+1 ’W”t+1 ) 67’1t+1] (3)
[E 7 (Tt+1 W‘fﬁjﬂ (1) +% [EtFj (7"211 77}5 >2€Tt+1:| (3)
+i [EtFJ [€Tt+1]3} (3)

Next we use the portfolio returns (31)-(32). The first-order portfolio share for
a Home agent is:

YZHjt (1) [Et (ert+1)2] (2)
= [Eern| 3) 717 ) + (=) B eria] )

F -7 [Er] ) - 2O g e ) (16)
b 2 OEZ Oy 2 2T [ e )
+(1‘— (B (i, 1)2%1] 3)

(1) ZE OV [l (on ] 3)
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Similarly for a Foreign agent:

Yzrjz (1) [Et (67}+1)2] (2)
= [Blena] 3) =77 (3)+ (1 =) [ B riera| 9

-y [E] ) - 2O g e ) 9) (47)
N [_7 (1+41) zr; (0) (12— zr; (0)) n é _ 1_771‘}‘%] |:EtF] (ert+1)3] (3)

O (et o o]

2
2255 (0)

(1= ) ZE B (o] 3)

As shown later the third-order expected cubic excess returns are zero for any
investors: [EtHj (ertH)S] (3) = [EtFj (ert+1)3] (3) = 0. Averaging (46) and (47)
across investors in a given country, and combining the results, we get the average
portfolio share:

7t (1) [By (eri)’] (2)
= LB er] () + [Bferva] (3) + P (3)]

1— _ _
+ 2 DB A ern] (3) + [EFri eria] (3)]

2
I [ERAL) (1) - [EFr] (1) (48)
o [ TERRR B o)’ 04
2|+ ER [B (ern)?| (3)dj

1
+

N % HEtH (r;il)%m} (3) + [Ef (rﬁl)%nﬂ] (3)]

T =n) | [ B o) (3)d)
2| SR B (ern )] 8)d)
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Similarly, taking a cross-country difference leads to:

vz (1) [Ei (eri)’] (2)
= [EtHertH] (3) - [EtFGTtH} (3)

+(1—7) [[EHrﬁlert+1] (3) — [EprﬁleTtH] (3)}

+ (1 =7 [[Efrd] (1) + [Efrd] ()] (49)
JELOL B (ern)?] (3) dj
= [ EP B (ern)’] (8) dj

. # (B2 (12)? ere] (3) = [BF () eren] 3]

Ii % [EHJT;L (erts1) ] (3)dj
— [ ZeOt [EFjrﬁl (eret1) } (3)dj

-

(1 =9)

3 Signal extraction

3.1 Conjecture and general formula

The agents infer the future productivity innovations based on the unconditional
distribution of shocks, their private signals, and the component of the cross-country

difference of asset prices that reflects unobserved future innovations and liquidity

shocks:
D T{{ - Tf
Ty = EHt+1 — €Ft+1 + /\7 (50)
where ) is a coefficient to be determined. From (10) (7/ — 7") /7 is a first-order

variable with mean zero and variance 2002 (1 — p.). It is not correlated with
productivity innovations.

We can limit ourselves to a signal extraction based on the cross-country differ-
ences. Ultimately, A\ is computed by relying on the asset market clearing and the
portfolio share (48). The liquidity shocks enter (48) through the various expecta-
tions, that involve (50), hence 7/ — 7f'| as well as directly as 77 (3) = 71/ — 7T
The fact that 72 (3) enters (48) in these two ways is what will allow us to solve
for \. If 71 (3) was also entering (48) we would need a variable similar to (50) in
terms of worldwide average.

A Home investor j wants to infer the Vector of productivity innovations §, ; =

e i+1,€ F,t+1|/ using her signals v p A and th , (50), and the unconditional distrib-
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HH  HF
zP v 00

ution of productivity innovations. The vector of signal is Y; = i Vi

The vector of signals Y} is linked to the true innovation vector §;,; through a ma-
trix X, and is subjected to a vector of shocks v: Y = X& + v. The errors are
independent, hence the variance of v is a diagonal matrix R.

The generalized least square estimate of £, ; denoted by ét 41, follows a Normal

distribution with mean £, ; and variance V' (é} +1> where:

-1

§t+1 = (X/RilX)_l X,Rilyz ) 4 (ét+1> = (XIR?lX) (51)

3.2 Home investor

For a Home investor j, we use (19) to write the matrices X and R as:

1 -1 4\*0o?
1 0 o
_ ) : _ 2

X=|0 1 ; diag (R) =| o%p

1 0 o?

2

0 1 o;

We then write:
1 D 1 HH
X'Rly, — 42002 Ty + Y Yjt
¢ 1 D _1  HF
D2zttt T 2 Vit
1 1 1 1
+ =+ = — 2,3
/ y—1 - 4X2002 oHH o2 4X*002
XRX = __1 _1 + _1 + 1
4X%002 4\%002 o2 o2
1 o 1
2 + o 4+ 1)2
_ -1 o 2)20 <a2 ) 2X20
X'R7'X = 2
( ) v 1 1 + s + 1 2
2220 2029 o2y

1 JZ n o? 4o
2/\29 UHF a%’H

The estimates of the innovations are then:

Hj o Hj Hj H,F

Et (gH,t+1) = Q.q mD‘Tt + aeH ’L)HU] t + X orVit (53)
Hj . Hj Hj H,F

B (epis1) = ap xD'Tt + aaF vHth + O prU (54)
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where:

1 o2 1
Vv (a%yF * 1) 2)%0
1 1 2 o?
V [ 2)%0 <012:F + 1) 2 a%;H
1 1 o2
Vo0 o2 L.
1 o2 1
v (‘712&1,}1 * 1) 2)%0
1 1 o2
Vo0 o2
1 1 o? o2
V [ 2)%0 * (a%:H + 1) 2 aiF

: o HH HF -
z{ only entails first order terms, while v;;" and v;;" entail zero order terms (the

idiosyncratic components) and first order terms (the true innovations). We can

Hj

split the coefficients in (53)-(54) between their various order. af}ix p and a g p

have zero- and second-order components:

= ~[otien] © = 555y

‘4 (1 + 2)\29)2 U%_I’HO'%LF
9 _U%I,F + U%{,H + 4)‘20‘7%&1

4 (1+2)%0)" 0% 0%
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Hj Hj Hj Hj .
By contrast, &y ,ps @75y Qop g a0d o 5, p only have a second-order component:

|:aHj T (2) . ]_ + 4)\29 O‘Z
ORI 2 (14 20%0) o

A 1 o2

Hj a

2 =

|:OéaH7vF ( ) 9 (1 + 2)\29) U%I,F

. 1 o?

Hj 2 _ a
[aEF,vH_ (2) 5 (1 I 2)\29) g%{’H

[aHj 1@ = 1+4X%0 o2
“hor] 2 (1+2X%0) 0% p

The various order components of expected productivity innovations (53)-(54)

are then:
o -
R 2 (1+2x%0)""
. 7 1
[Ef{] (erern)| (1) = —mxf)
. . o2 (114220 1
EHi 2) — a H,H HF
[ t (gH,tH)_ (2) 2(1+23%0) | 0%y € T U%’FGM
. . o2 1 1+ 4)%0
Bl 2) — a P A
[ ¢ (5F,t+1>_ (2) 2(1+2/\20) U%{?Hej,t + U%{,F €t
2 2 2, o
- 7 O-H,F_O-H,H+4)\ QO-H,F
(B )| 8) = o2 IO z
i Ouuour
N o? 14 4X%0 L]
£ €
9 (1 + 2)\20) O'%[’H Hit+1 O'%I’F Fit+1

. —0% .+ 0%, + AN%002
B (eran) | (3) = o2 At D
4 (1 + 2\ 9) OH HOHF
o2 14 4)\%0
+ ——5—F€Ft+1

+ 3
2 (1+2)%0) L;H e g

The agent’s estimates of the variance-covariance matrix of productivity inno-

vations is equal to V/ (é”t +1> in (51), the second-order component of which is:

0.2

V(&))@ = 5 5mm)
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We can also show that the third order component of the variance is zero: [V (ét +1)] (3) =
0.

We can also compute expectation of higher order products of the innovations.
First, recall that:

E(2?) = (Ex)? +var (x)
E(ry) = cov(z,y) + (Ex) (Ey)

Using this, we write:
[E,:H] 5Ht+1 ] (2)
2 .
([EtHj EH t4+1 ] (1)) + {V (£t+1>1 J (2)
2
N 1+ 4270 2
- \2 1+2>\2 a 2 (1+2)%9) °

Similarly:

B ern)’| @) = B (enen)’] )

[ Cnaner)] @) = ( e >+[v (), @

i 1
-2
N 1+2/\2 > IR

which implies:

B )] @) =[BT ] @)+ B (epn)] )= 2 [B menerin)] @)

—

= <;$D) i + ﬂ02
ERCHEIONE 11[;%(9 7| <21>121A{2Hf (eren)’] @)+ 5 [B (erpnerin)] (2
t t+1 411 t H,t+1 1% R 5 [Pt EHER
= 502
[EH3524+15£F1] (2) = % HEtHj (5H,t+1)2] (2) - [Eg{] (5F,t+1)2] (2>] =0

It is also useful to write third-order expectations of cubic products of the in-

novations. We use the general property that if £ and y are normally distributed,
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we can write:

E(2%) = (Ez)® + 3 (Ex) var (z)

B cov (x,y)
Vo= mvar(x) e

where ¢, is independent from = and Fe, = Ey — Ex - cov (x,y) /var (z). This

implies:

E(y?) = B(«) Y | g p(?)

var (x)
- B ;Z@;) o ﬁf;;;) B () Ex + EyE («?)

= E(2°) CZZﬁm(;j) - czzﬁm,y) [var (z) + (EJ?)Q} Ex + EyE (%)

= 2cov (z,y) Ex + EyE (2?)

We therefore write:

3
, ; 1 1+ 42%0
Hj 3 o D 2
)] (3 = (2 (1+2)20) ) 3 (2 (1+2)%0) xt) 2(1+2)2)

3
, 1 1 1 1—4)%0
EHI 2 3) = —[— -~ D D 2
[ v (1) 5F,t+1_ (3) (2 (1+2)\29) xt) + 5 (1+2)\29) Ty 5 (1+2)\29) O,
[EtHjEH,tH (eres1)’| (3) = — [Ef]] (EH,t+1)25F,t+1} (3)
B (i)’ 3) = = B )| 9

3.3 Foreign investor

!/
For a Foreign investor j, the vector of signal is Y; = ’x? , vf;H, vf;F, 0, 0‘ . The

matrix X is identical to the one for a Home investor. We use (20) to write the

matrix R as:

1 —1 4)%00?
1 0 a%{’F
X=|0 1 ; diag (R) = | o}y
1 0 o?
0 1 o2
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We then write:
X'R7YY,
X'R7'X

1

(X'R'X)"

<%

4)\21603 xtD + U%?F UJ}ZZH
_4)\21903 .%? + a?il’H ’UJ}T;F
i tas vt o
~ 0 oz T, T
Tge + (% + 1) 2 2,\129
2
o + (5

+1)2

where V' is identical to (52). The estimates of the innovations are then:

E/7 (em11)
Bl (epi1)

where:

Fj D Fj F.H Fj FF
Oéslj{,met + aeé,vHUj,t + O‘s[&',vFUj,t
Fj D Fy F.H Fj FF
Oésg’,:ert + asI%,vH'Uj,t + aslg',vF,Uj,t
1 o2 1 1
V\ohy 2220
1 1 o? o2
= + —+1]2] 5°
vV |22%0 0% H o2 p
11 o2
V2N oy
1 o2 1 1
V\okse 2)%0
1 1 o2
V2N o p
1 1 o2 o?
= + —4+1)2| 5=
V' |2)%0 0% F o3 n
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We split the coefficients in (55)-(56) between their various order. afﬂ},w p and afl%x I

have zero- and second-order components:

- . 1
F F
_aalzl,:cD_ 0) = - [ae}%a:D] (0) = 2(1+270)
r F‘ T F.
olfp| (1) = [oflo] ) =0
Wi 2_0%{F+0%{H+4)‘290%{H
aaH,:ﬂD (2) = T04 2
L J (1+2)\ 9) O'HHUHF
2 2
_ UHF—UHH+4)\ QO'HVF
0fin] @) = o2

‘4 (1+ 2/\29) oh HOH F

] Fj ] Fj .
By contrast, a_j7 iy @iy Qg a0d oo, p Only have a second-order component:

[ 1(2) = 1+4X°0 o2
Ceiton ] 15T 9 (11 20%0) 0%, 4
. 1 0.2

2 — a
o] @) = 3 (1+2)%0) 0% 4
Fj ] 1 o

2 ==

[ 6F'UH_ ( ) 92 (1 + 2)\29) O-%—[,F
[ 1) = 1+4)%0 o2
Celer | 15T 9 1 1 20%0) 0

The various order components of expected productivity innovations (55)-(56)
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are then:

. . 1
Ef (e 1) = ————aP
B )| ) = g™
. 1 1
[ | ) = 5y
- : o2 [14+4x% R—
EFJ c 9 — a F,H+_ E,F
B Cnd)| @) = 5 e e
: : o2 |1 1+ 4\%0
R —r par 1420 pr
B Cren)| @) = g B
. 1 —0% o4 0%y 4 4X?002
Bl enan)] (8) = oL T 2 I
- 4(1+2>\9) oY uOH F
o? 144270 L !
g g
2 (1 +2)\20) O'%_I’F Ht+1 . Fit+1

‘ L0 p — 0%y + 4N003
(B (ere)| (3) = o3 T0H T2 00 p
4(1+2x (9) ol uOp

o2 1 Lt 420
€ —F ¢
2 (1 + 2)\29) O'%LF Hit+1 O'%_I,H Fit+1

The agent’s estimates of the variance-covariance matrix of productivity inno-
vations is equal to V/ (ét +1) in (51), the second-order component being the same
as for the Home investor.

We can also compute the expected values of [EtF] (5H7t+1)2] (2), [EF (er, t+1)2} (2),

[EtFj (€H,t+15F,t+1)} (2), [Etpj (615D-F1)2i| (2), [Efj (524+1)2] (2) and [E gt“g”l] (2)

which are identical to our results for the Home investor. Similarly, | E/7 (¢ H7t+1)3] (3),

[EtFj <€H,t+1)2 5F,t+1} (3), |:EtFj€H,t+1 (5F,t+1)2] (3), and [EtFj (EF,HI)S} (3) are the
same as for the Home investor.

3.4 Aggregate expectations

Home and Foreign investors agree to a first-order:

B (o) (1) = [ emern)| (1) = = [B (epen)| (1) = = [B (eru)| (1)
When averaging across agents, private signals add up to zero. The aggregate

26



second-order expectations across agents in a country are then all zero.

[EtHj (EH,t+1)] (2) = [EtF] (5H,t+1)] (2) = [EtH] (EFﬂt“)} (2) = [EtF] (EF’tH)] (2)=0

The third-order expectations are the same across agents in a given country.
The Home investors’ expectations for average productivity and the cross-country
differential are:

9 o 12LI F—0 %{ H D

[EtHj (eresn + gF’tH)} ) = - (1 + 2/\29) o2 02 Tt
HHOHF

2
+o,

8H 41 EFt41
O' + 0'2
H.H H,F
' N0 (0% 4 + o2
|:Et}[-7 (5H7t+1 — €F’t+1)i| (3) — _0-2 ( ;IH HF) [L’?
(1 +2A 9) UHHUHF
2)\29 0_2 8H,t+]_ B 8F,t+]_
1+2)\%0 ¢

2 2
OH.H OHF

Similarly for the Foreign investors:

Fj 9 U%{ F— O-%{H D
[Et (ems1 + 5F,t+1)} (3) = o, (1 i 2)\29) o2 2 Ly
HHOHF

2
+o,

o2 * o?
HF H,H

EHt+1 €F,t+1]

. )\26) 0_2 + 0_2
|:EtFj <€H,t+1 — 5F,t+1):| (3) — _0-2 ( 2HH HF) :CtD
(1“‘2)\ 0) UHHUHF

2X%0 [€H,t+1 5F,t+1]

2 2

+ o, -
1+ 2X%0 Our  OnH

If signals are more precise on domestic innovations (0% » > 0% p), and increase in

D leads Home investors to expect a lower worldwide productivity than Foreign
investors.

Investors also disagree only when signals are more precise on domestic innova-

tions:

B ()| 8) = [ B ()| B) = X [=al + (14 4X0) epuss — ped]

[Efj (gF,tH)] (3) — [Efj (5F¢+1)] 3) = T[-2P+emu — (1+43%0) eppai]
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where: ) )
2 _
g, Our —OHH

2 (142)°0) 0% yohp

4 Solution of the model: general aspects

4.1 Analytical form

The model is solved for seven endogenous variables: the asset prices ¢ and ¢,
the capital stocks kﬁH and kﬁl, the average portfolio share 2!, the consumption
of young agents, averages across agents in each country, cﬁt and cit.

The publicly observed state variables are S; = [aP,a', kP, k] as well as P
in (50). We conjecture that the seven variables are quadratic functions of the state

variables:

2
th = oS+ a5,qD:U? + S} A pS: + ﬂqDStx? + typ (x?) + KgD

2

6 = agaSi+asgary + SiAuaS + BuaSiey + tga (27)” + kga
2

kﬁkl = ozkASt + a5,kAx? + S;AkASt + ﬁkAStl’? + Hi A ($?) + REA

2
ktDJrl = OékDSt + Oé5,kD£CtD + SzAkDSt + ﬁkDStxtD + Uip (l‘?) + KkD
2
¢y = QeaSi+ aseary + SiAcaS 4 BeaSiwl + poa (28)” + Kea

D = @S + asepxl + SjApS: + Bop Sl + pep (¢F)”
where the a’s are 1x4 matrices of coefficients (with zero and first order compo-
nents), the as’s are coefficients (with zero and first order components), the A’s
are 4x4 matrices of zero-order coefficients, the ’s are 1x4 matrices of zero-order
coefficients, the u’s are zero-order coefficients, and £’s are a second-order constants.
The model is solved using seven equations. The capital accumulations (33)-
(34), the asset market clearing relation (35)-(36), the consumption Euler equation
(37)-(38), alongside (29), and the average between the portfolio Euler relations
(39)-(40).

Using (2) and our conjecture, the dynamics of the state variables are:

0
0
St+1 = let + N25t+1 + NgfL'tD + N4 (fL’tD)Q + N5Stl'tD + , + K (57)
SINGS,

SIN,S,
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where €, = [€H,t+1,€F,t+1]l, Ny = [07 0, tps MkA]/7 Ng = App, N7 = Apy and:

p 0 0 0
0 0 0
Nl - p
Q1 kD Q2D O3kD Q4kD
A1 kA Q2rA Q3kA Q4kA
1 -1 0 0124 0
0.5 0.5 0 014 0
Ny = ; N3 = : N5 = Led ; K=
0 0 Q5 kD 51@ RkD
0 O Q5 1A Bra KkA

4.2 Some useful expectations
The optimal portfolio shares combine the expected values of various combina-
tions of the average return (29) and the excess return (30).
4.2.1 Combination of unobserved fundamentals
Using (50), we write that:
el (1) = |EPa] @) =0 (58)

Furthermore:

5 (20.)°] () =

E/ (sﬁl + A%) ] (2) =202 (1+2X°0)  (59)

4.2.2 [Ef” (67“15—1-1)2} (2)

WEe first compute the second order component of the expected quadratic excess

returns, which relies only on the linear terms in (30):
B (era)’] (2)

= [B (=) [af — k) +rala = )] @

_ E'tHj ( (1—ry) [afil — wkﬁl} ) @)

+7¢ (1,40 (0) afy + a3 gp (0) Ky + 590 (0) 210, | — af

2
= |E/ [1 =7+ rgou0p (0)] ey + Tgas4p (0) 284 2)
+[1 =71y + 7140140 (0)] paf’ + [rgazep (0) —w (1 = rg)] k7 — af
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Recall that expected excess returns are zero to a first-order, which implies:
0 = [EtHjerHl} (1)
= <1—ra[{Ef%#L}<U-—wkﬁluﬂ-+rqu a8 (1) = aP (1)
= [1=rg+ 10140 (0)] pag’ + [rgasgp (0) — w (1 —1¢) ki (1) — g (1)
+[1—ry+ 140140 (0)] |:EH]5t+1:| (1) 4+ rqa5,4p (0) [E thH] (1)

0
= [1—ry+rea14p (0)] pa + [rqasep (0) —w (1 — 1) ki, (1) — ¢ (1)
1 —1ry+re0q4p (O)xD (1)
1+ 2)\%0 t

where we used (58). We can then write:

[EtHj (€Tt+1)2] (2)

i 2
= B (11 =1y + ronan ) B + rgasan 0)70.)°] (2)

_21 — gt TqO‘Ql,qD (O)xtD (1) Ef{j [1—rg+re014p ((,)3)] et (1)
1+2)\6 +rq05 40 (0) Tyiq
1 —r,+rya1qp (0) 2
* ( él + 2qA29q w (1)

i 2
= B (11 =1y +r0nan 0) el + rgasan 0)72.)°] (2)

B (1 — g + 740140 (0) p (1))2

142X\ t

Using (59) and our results for [EtH J (5&1)2] (2) we obtain:

[EtHj (€Tt+1)2} (2)
= 9 [(1 — g+ TgQ1 4D (0))2 2X°6

2
m + (Tqa5,qD (0)) (]_ + 2)\20):| O'2

The expectation for a foreign investor is identical. Using the form of as,p (0),

derived below, this can be rewritten as:

B (erea)’| 2) (60)
2
— 9 (1—rg+ qu‘;,qD (0))2 2020 + T'q . JZ
14+2)70 1+ [(1 —rg)w —reazep (0)] ¢
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4.2.3 [Efjrﬁlert+1] (2)

We now compute the second order component of [EtH J rﬁlert+1} (2), which

relies only on the linear terms in (29) and the excess return (30):

[Efjrﬁﬁ?”tﬂ] (2)

(1 - Tq) [aﬁi-l - szé&-l] ] [ (1 - Tq) [at[—)i-l - Wkg-l] ]] (2)

EfI
+TqQ£|—1 - %A +7‘qqt2_1 - th

= (1= 7+ 1g02,0 (0) | B2y [(1 = 1) [0y — whEL] + gl — aP]| @)

(1—ry) [afil — wkﬁl} ” (1)

+7"qQ£—1 - Qf)

(1 —7g + 7140244 (0)) pa; (1)
+ |+ [rgouga (0) —w (1 —ry)] by (1)
—q;* (1)

where we use our first order results derived below. Notice that the last bracket

in the second row is equal to the first-order expected excess return, which is zero.

Hj
L

We therefore get:

EterZiW?”tH] (2)
[1— 1y +14014p (0)] Pa? (1) '
= (L= 1y + 700204 (0)) | +[rgas g (0) —w (L= K2, (1) | B [4]] (1)
—qP (1)
[1 =714+ rq014p (0)] 6tD+1

Hj A

Ee
t €41 D
+rq05.4p (0) 7,4

+ (1 =g+ rya2,44 (0)) (2)

From the signal extraction results we know that [Ef J [5{‘“]] (1) = 0. In addi-

tion 7%, and z, are independent. We are therefore left with [EtH J efﬂsﬁl} (2),

which is zero as shown in the signal extraction. Therefore:
[Efjrﬁleml] (2) =0 (61)

for all investors in all countries.
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4.2.4 Second order expected excess returns
Using (61) in (44) we get:

0 = [Eferya] (2)+ [El eriq] (2)
+ (=) [Erieren] (2) + (1 =) [Ef rierea] (2)
= [Blleria] (2) + [Ef eria] (2) (62)

5 First-order solution

To a first-order, we write the form of the asset price difference, the capital

accumulations (33)-(34), the asset market clearing relation (35) as:

¢’ (1) = agp(0)S:(1) +asgp (0)z; (1)

kAL (D) — KA (1) = éq;“m
KDL (1) — kP (1) = %qf’(l)
G () + K (1) = e (1) + T2k (1)~ e (1)

(39)-(40) imply that expected excess returns are zero:
[Ef[jertﬂ] (1) = [EtFjertH} (1) =0

The consumption Euler equation (37)-(38) involve expectations of 7 ,, which boils
down to expectations of ¢{}; and af},. Under our conjecture for the form of the
solution, expectations of qﬁH consist of expectations of aﬁrl and aﬂrl, the capital
stocks at time £+ 1, which are known, and expectations of xﬂl from (50), which are
zero for all agents as there is no information at time ¢ on productivity innovations
at time ¢ + 2 and on liquidity shocks at time ¢ + 1. The expectations thus boil
down to first-order expectations of productivity innovations, which are the same

for all agents as shown in the signal extraction analysis. This implies that:

Bk () = [P () = [Beita] )
The consumption Euler equation (37)-(38) thus become:

A= [Brfa] 1) = 7= [0 () + (1= 0k (1) - ¢, (1]

0 = aP (1) +(1—wkP (1) = B (1)
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From (29) we write:

[Erii] (1) = (1= 1)) [pai* (1) = whkiy (D] + 7 [Eegha] (1) =g (1) (63)

where we used the results from the signal extraction, namely: [Eief},] (1) = 0.

5.1 Worldwide averages

We start with the solution for worldwide averages. From (33) and (35) we

write the average asset price and consumption as function of the average capital:

' (1) = €[k (1) =k (1)] =& [ora (0) S, (1) + aspa (0) 2 (1) — K (1)]
= ¢[area(0)af (1) + agpa (0) kP (1) + aspa (0)  (1)]
+¢ [042 ka (0) @24(1)+ (apa (0) — 1) K (1)]
et LU B (T

C;‘t(l) = Eat

Using these results and (63), (37) becomes:

0 = (V)= (L= w+ QD) + L+ kL, (1) - o [Brd,] ()
0 = —a/ ()= (1 -w+&k 1)+ 1+, (1)
_51 ; 7 (1—ry) [pai (1) — wk; ()]
_El ; 77315 [aa k4 (0) pa;t (1) + (capa (0) — 1) ki, (1)]
‘|'51 ’_Y 75 [z 4 (0) @i (1) + (aapea (0) — 1) k7 (1)]
1=y 14 (0) p

re | a1 pa (0) pay” (1) + (1) + asra (0) k7, (1)

1+ 2220
o Lé [arpa (0)aP (1) + aga (0) kP (1) + s pa (0) 2P (1)]

where we used (58), [Ewef,] (1) = 0, [Eely] (1) = [142X%6] xf) (1). Using

33



our conjecture for k7}; (1) this becomes:

~
+ [1 + 5 + 51_77 (1 — Tq) w + El_T,qué: (1 — 04 kA (0)) Q2 kA (0) @ (1)

—-1- 61_77 (1—71y) p+c2aspa (0) — 61_7”’7’(1504%,;“4 0)p ] s

w[l—l—El_TV(l—rq)] |
| -l 0= @+ O] (1 - aupa () | B
—El_Tfquf (1 — Q4 A (0))2

aq 0
1 o120 (0)pa? (1) 1 S5 P sal (1) + 01 (0) K2 (1)
1

o Le [ar pa (0) aP (1) + @ a (0) kP (1) + a5 pa (0) 2P (1)]

1 -

1+E+eS1(1-r)w

+
e 2r,E (1= aupa (0))

] [anea (0) 0’ (1) + asea (0) Ky (1)]

The coefficients on af (1), (1), kP (1) and k2, (1) are zero when aj 4 (0) =
aspa (0) = 0. Setting the coefficient on k! (1) to zero gives a second order poly-

nomial in ay x4 (0):

0 = P[Oé47/§A (0)]

- _{1_”5(1“1‘77)]—al;”rqm,mo»? (64)
—l—[l—l—c ; (l—Tq)w+(1+%7(1+rq))f} v ea (0)
Notice that:
Pl-c] < 0
P0] < 0
P[] = w{1+51;7(1— q)l >0
Pl4+oo] < 0

The Polynomial therefore has one root above one, and the other between 0 and
1, which is the only one for which the system is stable. Setting the coefficient on

ai* (1) to zero gives the solution for aga (0). The zero-order coefficients for the
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worldwide averages of capital are thus:

1,4 (0) = azra(0) =aspa(0) =0

azea (0) € (0,1) (65)
THe(Ad =)@ —rg)p -

YA+ +e(1=7)[(1—rgw+7r (1= aspa(0)) + & (1 —rgp)]

as4 (0)

where ay 4 (0) corresponds to the root of (64) that is between zero and one.
The zero-order coefficients for the worldwide averages of asset prices immedi-
ately follow:

Q1,94 (O) = Q344 (O) = Q544 (0) =0
g4 (0) = Eagpa(0) >0 (66)
aqa (0) = E(agra(0)—1) <0

Similarly the zero-order coefficients for the worldwide averages of consumption are:

1A (O) = 03,4 (O) = Q5.cA (0) =0

04 (0) = (1= (1= ) (1+) 2 (0] (67)
@) = (T2 - 1)

5.2 Cross-country differences

In terms of cross-country differences, the solution for consumption is given
directly by (38):

Q2D (O) = Q4D (0) = Q5D (O) =0
a1ep(0) = 1 (68)

ase.p(0) = 1—-w
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The coefficients on k7, (1), conditional on the coefficients on ¢ (1), are given by

(34):

o1 (0) = Zo1,n (0)
020 (0) = Zo2, (0)
aspp (0) = 1+%0437qp (0)
2 (0) = Zo1, (0)
o5 (0) = Z05, (0)

We solve for the coefficients on ¢ (1) using the fact that first-order expected

excess returns are zero. Using (30) and our conjecture for ¢” (1) this implies:

0

(1= rg) | |Bals] (1) = wkly (0] + 70 [EaR) (1) = aP (1)
(1= ) + rgongp (0] [Ea2, ] (1)

+ Irg340 (0) = (1= 1) ] K2 (1) + 102,40 (0) | B/l | (1)
o (0) iy (1) + rq0is, 00 (0) [ B wf ] (1) = P (1)

(1— 7’q) + rq(;l,qD (0) l’f) (1)
1+ 2)°0
+ [rqas,4p (0) — (1 —7y) W] kzerl (1) + 702,40 (0) paf (1)

+7q04p (0) K4y (1) — g (1)

(1 —7¢) + rga1,4p (0)] Paf) (1) +

where we used [Eirf,] (1) =0, [Eeih,] (1) =0, [Eefy] (1) = [1+ 2)\20}_1 P (1).
Using our results for the worldwide averages and the coefficients on kﬁrl (1), con-
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ditional on the coefficients on ¢ (1), this becomes:
. (1= 1) + ryon o (0)] 20
+ [rqez,qp (0) = (1 = rg) w — ] %O‘I,qD 0) |

_ 740240 (0) p+ 1ryaa4p (0) a2 4 (0) .,
' |+ [rgaen (0) = (L= rg) w = & gz (0) ] W

+ :[rqag,w (0) = (1 = 7g) w] (1 T Sy (0)) — Q34D (0)} k(1) (69)

3
+ |70a,40 (0) ataa (0) + [rges4p (0) = (1 = 7¢) w = %0‘4@ (Oﬂ ki (1)
I rqligq;léw (0) + [rqazqp (0) = (1 = 1¢) w — ¢] %aan (0)} 2P (1)

Setting the coefficient on kP (1) in (69) to zero we get a quadratic polynomial

in asqp (0):
0= (1—rg)éw+ (1 —7g) (€ + w) asgp (0) — rq (asep (0))* (70)

To facilitate the analysis, we rewrite (70) as a polynomial in asp (0), using the
fact that Q3 gD (0) = 5 [ag’kD (O) - 1]

O = P [OéngD (0)]
= 4 [(1—1g) (€ +w) +2r€] asgp (0) — 1€ (a3 (0))?

Notice that:

Pl—c0] < 0

PO} < 0

Pl = (1-ry))w>0
Pl+oco] < 0O

The Polynomial therefore has one root above one, and the other between 0 and
1, which is the only one for which the system is stable. As as;p (0) € (0,1),
asqp (0) = & [askp (0) — 1] is then the negative root of (70).

5,40 (0) = 2i (L= rg) (€ +w) = [(1 = 7)” (€ +w)” +4r, (1= rg) €] |
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Setting the coefficient on k(1) in (69) to zero we get:
w r
0= =1 = s ©) = =) (1+2) + Baan 0)] s 0
As a4,4(0) € (0,1) and as,p (0) < 0, the bracket is negative, implying that
Q4 gD (0) = 0.
Setting the coefficient on a;! (1) in (69) to zero, using our result that ay ,p (0) =

0, we get:

w T

0= == = =)+ s 0)] a2, 0)

As a3 4p (0) < 0, the bracket is negative, implying that as ,p (0) = 0.
Setting the coefficient on a” (1) in (69) to zero, we get:

_ (L—ryp
1—rep+[(1—7rg)w —re34p (0)] %

a14p (0)

Setting the coefficient on 2 (1) in (69) to zero, we get:
_ 1 —rg+rg4p (0) 1
14+ [(1 =7y w—r4asqep (0)] % 14+ 2)2%0

We have now solved for the zero-order coefficients of the cross-country differ-

as.4p (0)

ences. The coefficients on ¢ (1) are:

a24p (0) = auep (0) =0

a0 (0) = 5 [(1=r) (€4 = [(L = (€ + a1 =) €]
. (L—rg)p
a0 O = T e — ryman (0] =
1 —r,+rya1 4o (0) 1

O s
5,40 (0) 1+ [(1 =1y w —ryaszqp (0)] % 1+ M0 (1—p,)

The coefficients on k[, (1) are:

a2kp (0) = aupp(0)=0

N (I—=rg)p
w0 O = T T (1)@~ retiags (0)
asep (0) = 14 éag,w (0) € (0,1) (72)
asn (0) 1 —r,+ryaiqp (0) 1

E+(1—ry)w—ryas,n (0)1 42220
Note that these coefficients are functions of A that we have yet to solve for. The

coefficients on ¢} (1) are given by (68).
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5.3 Expectations of state variables
The dynamics of the first-order state variables are given by (57):

Sip1 (1) = Ny (0) Sy (1) 4+ Nageqq (1) + N3 (0) 2P (1)

where:
P 0 0 0 0
0 0 0 0
N (0) = ' N (0) =
a1 ,p (0) 0 askp (0) 0 as,p (0)
0 a2 kA (O) 0 Q4 kA (0) 0
The first-order expectation of future state variables by a Home investor is:
1
1+2)2%0
; 0
(BN S| (1) = Ni(0) S (1) + =P (1) (73)
asxp (0)
0

= N1 (0)S, (1) + L+ N3 (0)] 2P (1)

1
V23 (1+2)%)

where ¢ is a 2x1 vector: (1,—1)". The expectation for a Foreign investor is identical.

5.4 Average asset return

We now have expressions for ki (1), k2, (1), ity (1), g5, (1) which are the
drivers of asset returns. Using the form of the solutions we write the linear com-

ponent of (29) as:
ri = [(1—ry) (I — wly) + 7404a] Siy1 + 7405 gaTH — qaSi — Q5. 44Ty
Using (58) and (73) we write the first-order expectation by a Home investor as:
[EtHjTZil} (1)
= [(1=rg) (12 = wli) 4 rqaqa (0)] N1 (0) St (1)

L+ N3 (0)] 2P (1)

+[(1 = ry) (Iz — wly) + ryaga (0)] [NZW

D
—QgASE — Q5 4AT;

This implies that [Efjrﬁl] (1) = [EtFjTﬁJ (1).
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5.5 Consumption of old agents

The zero-order portfolio shares do not enter our solution so far, which can seem
odd as in the presence of incomplete asset markets these shares should matter
for the first-order dynamics. Under our specific model this is indeed the case,
but the link operates solely through the consumption of old agents. Taking a
linear expansion of the budget constraint (14) around the steady state, where
exp [¢, (0)] = (1 — @) (E)_l exp [r (0) + ¢, (0)], we get:

1 C  mj

lam: (1) + (1 —w) kae (1)] —

Hj 1) = p,Hj 1
Coir1 (1) Tt+1()+1_é 1—¢

A similar expression holds for Foreign investors. Next, we aggregate these relations
across investors in each country, and use the linear components of (31)-(32) to write

the results in terms of worldwide averages and cross-country differences:

A (1) = 1 ()4 T [af () + (1 =)k ()] = el (1)
Do (1) = 27 0) (rmes (1) = s (1) +aP (1) + (1= w) B (1)

where we used the fact that 2 (0) = 0.5 and (68). The second relation shows that
return differentials lead to unexpected differentials across countries in old agents’s

consumption in the presence of bias in portfolio holdings (27 (0) # 0).

6 Second-order solution

6.1 Worldwide averages of equity prices and capital

Computing the first-order solution for z” from (49) requires the second-order
solution of returns, which include asset prices. Our next step is then to derive
the second-order solutions for ¢, ¢, kP and k!, which in turn depend on the
second-order solution for cg‘t.

We use the second-order component of (33):

@) = g @)+ 5o

5 t
- éq:‘ (2) 4 B (2) + S5 [oma (0) af (1) + g g (0) K1 (1)]?

262
£—-1

8

(¢ ()" + 7 (@ (V)

2 [angn (0) aP (1) + g gp (0) kP (1) + a5 4p (0) 2P (1)]
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We define I; as a 1x4 vector of zeros with 1 in the ¢’th position, and define:

N - }l o100 (0) Ty + a3 i (0) Ts) [o1.gp (0) Iy + s gp (0) Is]  (74)

+ [0424114 (0) I + QqqA (0) 14]/ [04276114 (0) I + Qg qA (0) 14

Similarly the zero-order coefficients for the worldwide averages of consumption are:

ki (2) = %qz“ (2) + K (2) + 52221 ST NS, (1) + 58;521 5,40 (0) 2P (1))
—i—%as,qD (0) 2P (1) {ozlqu (0)aP (1) + azqp (0) kP (1)} (75)

where we used our first-order results. Similarly, we use the second-order component
of (35):

@+ )+ 5 | )+ W)+ @ 0+ 12 )]

= @4 TR @) - ek 2)
by | 0+ @ =) O] + ] 0P @)+ (1= ) k2 ]
e (I AN B G IR CLE)

A linear approximation of (15) shows that the first-order consumption of young

agents is the same across agents:

() + (=) ke (1) = o (O] = @ =) [EP2 ] )

Agents have the same first-order expectations, as shown in the signal extraction.
Furthermore the first-order expected excess returns are zero, so any heterogeneity
in zero-order portfolio shares does not translate into an heterogeneity in expected
portfolio return. As the first-order consumption of young agents is the same for all
individuals within a country, we get Df (c) (2) = D (¢) (2) = 0. Using our first
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order solution, the second-order component of (35) is re-written as:

g (2) + Ky (2)

= e 2) Tk ()
z Och(l)St( )‘f'acA(O)St( )+O‘56A(1) tD(l)
— | SO A )5 () + 5 08 ()2 (1)

1o (0) (2P (1)) + ea (2)
o 11— (4 © anea (O] af (1) + (14 €) (1~ g 0) — ] K (1)
b [P )+ (-0 P )
1 {1 +& 1+¢

¢ %30 (0)] kP (1) +

1+¢
£

5 — 1,40 (0) atD(l) + |1+

§

where we used the form of cﬁt to write:

asqp (0) z (1)

5 (2) = ea(1) S (1) + aea (0) S, (2) 4+ asea (1) 2 (1)
+57 (1) Aca (0) S (1) + B4 (0) Se (1) 2 (1) + pea (0) (27 (1))2 + Fea (2)

Using (74) to substitute for k%, (2), we obtain:

q (2) i i
- P O TR O - T a5
T 0 (D8 (1) ea 2)
e —[Ganl Gaan
_|_§_€ Sy (1) + L+ (1 —w) L) [+ (1 —w) 1] S (1)
—2[Ggaz) Goaz — @ N — 875 A4 (0)
% E% as g (0))° + 1 i ZHea (0)] [xtD (1)}2
1L—|-§1 —Q5.cA (1) tD(l)
2arqp (0) I c
_1L+£ }l + [1+§€+ 3*%2 )D<O)] I3 ] @sap (04 50 (O)] Q)
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where:

GqAJ = 1 z galqu (0) ]1 —+ 1 + 1 —; 5Oé?,?qD (O) ]3
Geap = [1=(1+ & apa(0)] L+ [(1+&) (1 — aspa(0) —w]ly

From our conjecture on the form of ¢/* we have:

6 (2) = g (1) St (1) + aga(0) 8¢ (2) + asga (1) a7 (1)
57 (1) Aga (0) i (1) + B (0) Sy (1) P (1) + 14 (0) (2 (1)) + rga (2)

Equalizing coefficients across the two relations, we get:

50 2) = g
asia(l) = ~rgp s (D
call) = ~perau () (76)
¢ 1 { c—w, £ ¢©
aga (0) = 1+§1—EIQ+1+51—E 4 1+€1_EOZCA(O)
¢ c
_1—_{_61 EBCA( )
e i
r © =~ |5 0 OF + 10 0)
%Oélgp (0) [1 %O&qu) (O) [1
AL — L& T [1+1£ﬁa3,w (0)] L |+ [1+1g—fag,w (0)} I
qA — Q1 L ¢
81+¢ + L4+ —w) L) [+ (1 —w) I
I —Sg N = 855404 (0)
1 & 1= (1+&) azra(0)]

1= (1+&) azea(0)] I ]
+[(1+8) (1 —agra(0) —w] Iy +[(1+8) (1 — agra(0)) —w] Iy

2c1+4¢
The restriction on a4 (0) leads to the same coefficients as in the first-order solution

above.

From our conjecture on the form of k! we have:

k' (2) = ara(1)Si(1) + ara (0) 8¢ (2) + aspa (1) 7 (1)
+57 (1) Aga (0) Sy (1) + Bia (0) S (1) 2 (1) + pryea (0) (2P (1)) + ia (2)
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Using (75) and equalizing coefficients we get:

ot (2) = %M @)

a5 (1) = g (1)

ain (1) = %an(U

apa (0) = f4+§aq,4<0>

B () = 8,4 0)+ s, (0) a1 (00 i+ aan (0) 1
a0 = g 0+ S5 s O

Apa (0) = %AMH%N

The solution for ay4(0) is the same as derived in the previous section based on

the first-order solution. At this point we have solved for the coefficients on k7!, (2)

and ¢;*(2) conditional on the coefficients on c}; (2).

6.2 Cross-country differences of equity prices and capital

From our conjecture on the form of ¢” we have:

6 (2) = agp (1) S (1) + agp (0) S (2) + asgp (1) 27 (1)

+51 (1) Agp (0) Sy (1) + B, (0) St (1) &P (1) + ptyp (0) (P (1)) + kg
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We use the second-order component of (34):

L2 = K@)+ LgP @+ P (et ()

g ¢
— @)+ %qf’ (2)

% Sazea (0) Iz ] S.(1)

+€ (044,kA (0) — 1) I4
-1

oG8 (0) [€aza (0) I + & (auagea (0) = 1) L] Se(1)a” (1)

a14p (0) Iy

S, (1)
« (1) tasgp (0) I

+

_ 1.D §—1 / Q14D (0) I 5042,kA (O) I
= kt (2) + 52 St (1) +053,qD (0) ]3 +£ (a4,kA (0) — 1) I4 ] St(l)
+§§;21045,qD (0) [g2a (0) 2 + € (aa (0) = 1) L) Si (1)’ (1)
1 1 1 D
g% (1) Se (1) + ¢ tap (0) 5, (2) + g oab (1) (1)
+%s; (1) Agp (0) S, (1) + %qu (0) Sy (1) & (1)
310 0) (P (1) + Frap

From our conjecture on the form of k2, we have:

k(1 (2) = awp (1) S (1) + awp (0) Sy (2) + asep (1) 2 (1)
+87 (1) Aep (0) Sy (1) + Bip (0) S: (1) 2P (1) + pgp (0) (2P (1)) + ki (2)
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Equalizing coefficients we get:

kkp (2) = %quD<2)

assp (1) = zas, (1)

o (1) = zoun (1) (78)
o (0) = Ta+ £y 0

Bip 0) = =5, (0) 0004 (0 + (4 (0) = ) 1 + £y 0

oo (0) = gqu (0)

a14p (0) I4

Avp (0
0 (0) taggp (0) I

55;1 Ayp (0)

s (0) I n 1
+(054,kA (0) — 1) I4 £

The solution for axp(0) is the same as derived in the previous section based on

the first-order solution.

6.3 Expectations of state variables

Using (57), the second-order component of the expectation of state variables

by a Home investor j is:

[E980] (2)
= Ny (0)S;(2) + Ny (1) S, (1) + N3 (1) 2P (1)

+N4 (0) (2P (1)) + N5 (0) S (1) 27 (1) + + £ (€99)

N (0) | Bz (2)

recalling that N, only has zero-order components. Using the results of the signal

extraction, we get:

29 H,H H,F
. o2 X0 e + o€y
(o] ) = 25 | B Lo (80)
2 1 , 144X%0 H,F
2(L+200) | e + 2 e
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Aggregating across agents, we get:
[Effera] (2) = / [Etngt+1] (2) dj = 0201 = [Ef'e141] (2)

Therefore [EfSi11] (2) = [Ef Sia] (2).
Another useful result is to compute the following expectation, for some 4x4

matrix B with only zero-order elements:

ES1BS ) (2)
_ [ [ MOs+ N2 ] N1<o>st+N3<o>x£<1)”(2)
i +Nogr +Nogi 11
[ M0)s, (1) N, (0) S, (1)
~ [ 4N (0)2P (1) +N3 (0) 2P (1)
NS ] 5
HEEAUEAO N 2| 1)

+ _Eﬂﬂggﬂ} (1) N.B

N1 (0) S (1)
+N3 (0) 2 (1)

+|Efie, N BN25t+1] (2)

Using results from the signal extraction, we write:

[EfjetH] (1) = mm? (1) = [E%H] (1)

where ¢ is a 2x1 vector: (1, —1)". In addition:
[EHJ&‘tJrlNéBNggtJrl} 2)

, B, B
Blg, ot 0 ] 2)

21 BQ2

= (Bn + Bm) [EtH] (€H,t+1)2] (2) + (312 + B21> [Eg{] (5H,t+15F,t+1)i| (2)
.

(= - 1+4X%0 1 »

= (Bn + Bzz) m% + (mxt (1))

2
& 5 1 2 1 D
+ (312 + B21) 21+ (1 n 2)\29) Oq (2 (1 I 2)\29) zy (1)
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where B is a 2x2 matrix equal to N}/BN,. Therefore we get:

B{8}1BS | (2)
= S, (1) N1 (0)" BNy (0) S, (1)

/ 1 2
+ | N3 (0) BN3 (0) + mz\f 5(0) (B+ B') Nou| (z (1))" (81)
+S; (1) Ny (0)' (B + B') | N5 (0) T T i 2A2 ]

1+ 4)\%0

2 (14 2)%) %t ( 2(1+2)%) <1))

2
B Boy) |t 2 (L b
+ (Bt B |5 (1+22%) " (2 (1+2\%) " (1))

+ (BH + 322)

Notice that the expression is the same for any agent in either country.

6.4 Average asset return

We now have expressions for k7, (2), k2, (2), ¢fi1 (2), ¢2, (2) which are the

drivers of asset returns. Using the form of the solutions we write (29) as:

rin = (1) (I = wly) + rg004] Spa

2
+74 [045,qu15£1 + S£+1AqASt+1 + 5qASt+1!L‘£r1 + Hga (mfil) ]

2
_OCqASt 07 qAxt S AqASt BqAStxtD - :qu (l'?) - (1 - Tq> RqA
rg(1—ry)
+ 2
re (1 —

” 2
+Tq) (=1 + w3 + agp) Ser1 + @5.4pT 4]

which we rewrite as:

2
[(—[2 -+ wI4 + OéqA) St+1 + 055’qug_1}

2
rﬁH = —QgaS: — a5 qA33t -5 v AgaSy — BqAStl’tD = Hga (37?) - (1= 771) KqA

+ (1 =ry) (Ia — wly) + rqaqal Spp1 + TqQB,QAIg—l + St,+1q)ra15t+1

ro(l—r ro (1 —r 2
+ [TquA + % (045,qA)2 + % <0‘5,qD)1 (xtDH)

TqﬁqA + 1y (1 —=1y) [aga — (s — wly)] a5 44

—"_ T —T,
1) [ — (I — wls)] s gp

D
] St417¢h
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where:
[aga — (I — wiy)] [aga — (I — wiy)]
+1 lagp — (I — wlz)] fogp — (I; — wis)]

We not turn to expectations. First, notice that a:ﬂl and S;,; are orthogonal,

rg (1 —ry)

(I)ral = TquA + 9

(82)

o) |:Ef[j5’t+1$£’_1i| (2) = 0. Using (58) and (59), as well as our results for zero-
order coefficients (namely ;44 (0) = 0), the second-order component of a Home

investor’s expected average return is:
[EtHJTZil} (2)
= —au(1)S (1) - an (0)51(2) = ;1) Aga (0) S, (1) = 5,44 (1) 2P (1)
~Bya (0) St (D) (1) = 410 (0) (2 (1)) = (1= 1) iga
(1= 1) (12 wf4> + 7a0tqn (O)] | E{7Suin | (2) + rgiqn (1) | B804 | (8D)

[EH]S;/H( ) @ra1Sii1 (1)] (2)

e (1

o 04 " a0 002 22 (14 X201 < )

where [ 960 (1) @rar Sia (1)} (2) can be computed using (81). Recall that
[EtHjStH} (1) is the same for all agents in both countries, and [E[f S, 1] (2) =
[EtF Stﬂ] (2). This implies that once we aggregate across agents in each country:
[Ef'ri4] (2) = [Efr{L] (2) = [Eiriy] (2) (84)

(83) can be split into the common components and the idiosyncratic ones,

which only enter through [Ef[ g Stﬂ} (2). Using (79) and the results from the
signal extraction, we get:

[EH]TtH] (2)
= [Birfa] @)+ 11— rg) (o = wl) + 7400 (0)] Na (0) | E{z1sa | (2

H,H H,F
2220 €t St
14+2)3%0 \ o3 4 oY 5

) . 6H,H H,F
- [Etrﬁkl] (2) + [(1 = rg) (I — wla) + rqrqa (0)] 2 (UHH * UHF> Ta

0
0
HH H,F
= [Eri)] (2)+@z,m<€§t + Ejj ) (85)
v OHrF
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where the second order coefficient O, ,, is:

0_2

@zwa = [1 —Tq T TqQ244 (0)] 7(1

Following similar steps, the expectation of a Foreign investor is:

€F7H 6F,F
A _ 7 1
|:E'tF],r.£’_1:| (2) — [Eﬂ“;:_l} (2) _|_ @z,ra < ‘72 + ‘; > (86)

Our OHH

We can also compute the expectation of the squared return (recalling that
Qa5 4A (O) = O)

(5 ()] @

= 8(1) 0 (0) g (0) 51 (1) + [EESL, (1) @paaSin (1] (2)

s A=) (- wl) ]
~25/ (1) al,, (0) o (O N (0) S, (1) (87)
s A=) (- wl) ] b
—285; (1) XA (0) ryrgn (0) _ [N2—2 (1 n 2)\29) L+ N3 (0)] zy (1)

where:

o [ (1 —rg) (T2 — wly) ] [ (1 —rg) (I — wly) ] (58)

+7e0qa +7e0q

and we used (73). Notice that [EtHJ (rﬁl)Q] (2) = [EtFJ (rﬁ1)2} (2) = [Et (rﬁH)Z] (2).

6.5 Excess return on asset

Using our solution we write (30) as:

2
erip1 = —QgnSt — a5,qutD — S{ApSi — 5qDSt$? — HgD (xf))
+[(1 = ry) (It — wl3) + ryayp] St1 + rqO‘&quBrl — (1 —=rg) Kgp

2
+S£+1d>er15t+1 + [ququ + g (1- Tq) 0‘5,qAa5,qD} (xtDJrl)

s g4 [agp — (11 — wi3)] Syuya”
1
+as gp [0 — (L2 — wly)] "

+ rQBqD +7ry (1 —1y)

where:
Doy =1 Agp + 1y (1 —1g) [ga — (I — WI4)]/ lagp — (I — wl3)] (89)

50



Turning to expectations, the second-order component of a Home investor’s

expected excess return is:

Elera] (2)

= —agp (1) 5 (1) —an( ) S (2) = 81 (1) Agp (0) S; (1) — asqp (1) 2 (1)
By (08 (1) 2P (1) — 11, (0) (2P (1))” — (1 = 1) kg
+(1—r) ([1—w13)+7"q04qp ()] [ | @) + raagn (1) [ B/ Siia | (89)

+[ i (1) mstﬂ(l)] (2) + raptyp20? (1+2)20)

L—

Aggregating across Home investors and using (73), (79) and (81) we get:

[EtHertH} (2)
= e (2) + e (0) S (2) + aer (1) S, (1) + S (1) Aer (0) S, (1) (91)
taser (1) 2P (1) + B, (0) S (1) 2P (1) + p, (0) (2P (1))

o1



where:

er(2) = rqquQUQ [1 + 2% (1-— pT)} — (1 —1y) Kgp + [1qa3.40 (0) —w (1 —7¢)] KD

1+4X%01 —p,

+ <|: erl] [ erl} ) + 2)\26) Oq

([ ) s
G (0) = —agp (0)+ (1= 1) (ol — wam )) + rqctqp (0) Ny (0)
aer (1) = —agp (1) + rgagp (1) N1 (0) —w (1 — 1) awp (1) + rqaqn (0) N1 (1) (92)

1
aser (1) = —asep (1) +ryaup (1) [Ngmb + N3 (0)

—w (1 —7ry) askp (1) + ryaqp (0) N3 (1)
Aer (0) = —Agp (0) + N (0) oyt Ny (0) — w (1 = 1) A (0) + g g (0) Avp (0
Ber (0) = =B (0) —w (1l —rg) Brp (0) + reagp (0) N5 (0)

1

+ | N3 (0) + m]\bb] (Der1 + q)erl) N1 (0)

fer (0) = —tgp (0) — w (1 = 7g) pyp (0) + rgaqp (0) Ny (0)

[#on], + [, =[], = (8],
4(1+22%)°

, 1
N3 (0) &y N3 (0) 4 ———
N5 (0) @ern 3()+2(1+2A29)

+

N3 (0), (q)erl + CI),erl) Nat

Note that (91) is the same for both countries. (62) then implies that aggregate

expected excess returns are zero:
[Elferya] (2) = [Ef erya] (2) =0

As (91) is zero, all its coefficients must be zero. a., (0) = 0 was already derived in
the first-order solution.

(90) can be split into the common components and the idiosyncratic ones,
which only enter through [EtH J St+1} (2). Using (79) and the results from the
signal extraction, we get:

[Eerea] () = [Bferia] (2) +[(1 7o) (h = wly) + g0 (0)] N2 (0) [ B{20a ] (2)

HH 9HF
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where the second order coefficient ©, ., is:

2270
Oser = [1 — 1g + 140140 (0)] m"i
Similarly we get:
Eeria] (2) = [(1=7,) (I = wls) + raqn (0)] N (0) |[E 2001 (2)

eF’H GE’F
- @z,er ( ]27t - ‘;J ) (94)

Owur OHH

6.6 Dispersion of expected returns

The cross-sectional (fourth order) variance of expected average returns across

Home investors is computed from (85):

Varf{ (r;il) = / ([Efﬂrﬁl] (2) — [Etr;il] (2)>2dj

2 2
— (0 2O0uH T OHuF
- ( 4 ra) 2 2
OuuoHF
as o2 = f (e ) dj and o2 Hr = f (e > dj. The cross-sectional variance of

expected excess returns follows from (93):

Varf (eri1) = /([EtHjertH} (2))2dj

2 2
20+ 0ur

- (@z er) p) 2

Onu%ur

The cross sectional variances across Foreign investors are identical.
As g = Tﬁrl + 0.5ery11 and 7R = rﬁH — 0.5er 41, the expected returns

on Home and Foreign equity from the point of view of a Home investor are:

[Ef{jmm} 2 = [Brla] @)+ [Etertﬂ] (2)

o i

+ (@Z,T(l + % er) + @Z ,ra ) jét
UHH THF

[EtHjTF,H-J 2) = [Brfa] (2) - 2 [Etert“] (2)

HH H,F

@Z er 7 @Z er 7

+ (@z,ra - 7 > Jét + @ZWG + 7 ) jét
2 OhH 2 OHn,F



The cross-sectional variances of these expected returns are computed as:

@zer ? 1 @zer ? 1
VartH (TH,t—i-l) = (@z,ra+ 27 ) D) + (@z,ra_ 27 )

OH.H U%—I,F
vV H ( ) o) ®z,er 2 1 + ) + @z,er 2 1
ar r - zora z,ra
P ’ 2 o %{H ’ 2 o %{,F

Expectations are more dispersed for domestic than foreign returns, as investors

put more weight on their signals on domestic productivity because they are more

precise:
H H O.%IF - O-%IH
Vary (rggs1) — Vary (trig1) = 20.,00.0—5———— >0
Oqu%ur
Vary (rue) = Varf (rpea) = — [Vary (ruea) — Var{ (rpea)]

6.7 Zero order portfolios

Using (60), (61) and the individual expected excess returns, the portfolio shares
(42) and (43) are:

1 [EtHjertH} (2)+7

23 (0) = o+ v [Ei (ere1)?] (2)
-1y . + Oser (EﬁH - Eﬁp> (95)
2 y[E (ert+1)2] 2) ~[E (67“t+1)2] (2) \ohn Ohr
2 (0) = 5 - SN (H - F) (96)
2 y[E(ere1)’] (2) v [Eilern)’] (2) \0hr  un

Recalling that the private signals on Home and Foreign productivities are inde-

pendent, the cross-sectional variances of portfolio shares are:

/(zm’ (0) — 21 (0)°dj = <7[Et(2ij;)2] (2>>2 /(;%Z)deJr/(%Ydj

2 9 2
o O, er OurtO0un
= 2 2 2

v [Er (eria)7] (2) OuuOHF

The expression is the same in the Foreign country.
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We now compute several expressions combining individual portfolio shares and
expected excess returns that will be useful. Recalling that zy (0) = [ zy; (0) dj we

write:

/% [EtHjertH] (2) dj

= /% [EtHjerHl] (2)dj + / (zm; (0) — 2z (0)) [Efjeﬁﬂ] (2) dj

2
) 1 )2 BH- HE
_ O, @) ——O) / <€2’t K

2 v [Et (€Tt+1)2} (2) OwH OHF
(@zj)2 Ok r+ 0hn

V(B (eri+1)*] 2) ohuohr

where we used [Efer,q] (2) = 0. Similarly:

22r: (0) — 1 ) 0., 2 2 + 2
/ ZF] ( ) |:EtFj€rt+1] (2) dj — ( _7) . O'H72F ZH,H
2 Y [Et (eriy1) } (2) ouuTur

Next, we compute:

[ oni ©) (1= 2 0)

= 2 (0) (1 — 2 ( / 2115 (0) — 25 (0))* dj
2
0% o+ o2
= zg (0) 1 _ ZH Z er H,2F 2H,H
v [Er (eris1) (2) O u0H F
Similarly:
© : 0l + 0ty
ZFj (O) (1 — ZFj (0)) dj = Zp (0) (1 —2F (O))— z,er ) :
[ B @) haohr
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6.8 Average consumption

We start from the second order component of (37):

ey (2)

yt

= [L+(1-w)l]S(2)

(1 - O[Q’CA (0)) IQ
+<1 — W — 0447514 (0))]4

(1 - 0427&4 (0)) IQ

Y- c !
SR
¢ () (1 — w — agen (0)14

2(1—-2¢)

) )

[ [ [EHJTﬁ1] )dj + [ EP= [Eg{j”tﬂ} (2)dj

2g3(0)(1—2zm;(0 . i .
l—ql-c| + J MEHJ [(er +1)2] ) dj —|— i EHJ [zrjeeri1] (2) dj
v 2 + [ [EFJTHI] 2)dj+ [ QZFJ(O [EFJer H} (2) dj

z g 0)(1—= J 0 1 ]
+/ MEP [(GT‘t+1) ] (2)dj + fEt g [2rjeerei] (2) dj i
' 2
fEHJ [Tﬁkl + Werﬂ_l} (2) d]
2
4 + [ B [Tt+1 + 2P e”“] ()4

] 5.01)

—_
|
ol
—~
—_
|
2
~—
[\

We now take a closer look at the expectation terms. First, we write (recall that

Zpj 1s in terms of deviations from the steady state):

|:EtHjZHj,t€7°t+1i| (2) = zmje (1) [Efjert“] (1)=0

Next, we use (61) and (84) to write:

~ [EF AP @d+ Blenal @) [ (M)c@

2
_ [Et ) } |4 E, [ert+1]2(2)/ 1 —4zp; (O)il — ZHj (0))dj
- [Bet)] @+ Blaro O]
2 O..er i O-%J,F + O-%T,H
+E; [eri41]” (2) ('y By (erenn)”] (2)) 02 0%y

56



Similarly:

C) 202 ot a2
z,er H,F H,H

+Eq [eria]” (2) (7 [E; (€T‘t+1)2] (2)

2 2
Ouuour

Putting our results together, we write the second order component of (37) as:

Cpr (2)
Y—C (1 —a2ca(0)) I (1 —a2ea(0)) I
+2(1—E)S (1) (1 = w — agen (0) 14 +(1—w—agea(0))1y ] Si (1)
-y N\ [, A 1_5(1—7)2 A 2
—T (1-20) [Etrtﬂ] (2) - TT [Et (Tt+1) } (2) +¢(2)
where:
b B 2 1oy 1-7[z20)
l1—-vy1-¢ (1 z (0)) 7(2) — By lera]” (2) 1
0(2):— 9 2 e QU%FJFU%{H
! ~EBelerenl (2)7 (w[meéfbﬂ(z)) e

Recall that the conjecture for consumption is:

cyAt (2) = a(0)S:(2) + aea (1) S; (1) + asea (1) 2P (1) + S (1) Aca (0) S; (1)
4804 (0) Sy (1) 2P (1) + p1o4 (0) (2P (1)) + hea (2)

Using (84) and (87), as well as (73) and (79) and (81) and equalizing coefficients,

o7



we get:

In addition, we get:

IQ + (1 - CU)[4

(1= ) [aga (0) = [(1 = 1) (T2 — wIa) + 4044 (0)] Ny (0)]

oy [ a0 = [0 =ry) (T = wli) + 7y (0)] N (1)

3 _ —ryatga (1) N; (0)

(1 =71¢) Kga — [(1 = 1g) (I2 — wly) + ryaqa (0)] £ (2)

((#), ¢
((#),+

re (1

N [T‘I:qu (0) + 8_ o (5.4 (0))?

1=y |: <((i)ra2> 11 + (é"ﬁ)n)
2 —l—( (i)m2
1-¢1 = maQ

B 2
(%)) 5717 379)

(#)..) 717 2

0

Oq

2
Oq

144020 2

2(1+2)\26) Ta ]

)t (B2),,) iy
12 21

2(1+2,\29) a

frga (0) = [(1 = 7y) (Ia — wly) + 74044 (0)] Ny (0)

1—
2 ’yq)ra2:| NB (0)

— N3 (0)' [cbml +

1
C2(1+2)%

I—7

)N3 (0), {q)ml + q);“al + T (cbm? + (I);"aQ)

~7“(12) + <&)ra2) :|
11 22

] 202 (1 4 2)%)

i} Ta2> + <i)ra2) :|
12 21
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|

) [ 504 (1) = [(1 = 1g) (T2 — wla) + 140004 (0)] N3 (1)
v i —rq0qa (1) {NgmL + N3 (O)] zP (1)

|

(97)



as well as:

B0 7
Baa (0) = [(1 = 1) (L2 — wla) + rgarga (0)] N5 (0)
- [Ng (0) + m]\@ (Prar + ®41) N1 (0)
1-4 ’ (Braz + P}z) N1 (0)
2 [N22 (14 22%0) L Ny (0)] —2[(1 —1,) (I — wly) + 1404 (0)]) rga (0) ]
and finally:
AcA (O> ﬁ 1 i ¢
_ gl v—c¢ (1 — a4 (0)) I (1 —a2.4(0)) 1
= A0+ 1=72(1—2)° | +(1 —w— auea (0))14 +(1 —w — aea (0)1s ]

+ [w (1 — Tq) — TqQlg qA (0)] Apa (0) - N (0)/ {(I)”ﬂ + 1_77(1),%2] Ny (0)

I—7
2

ga (0) 0ga (0) + (1 = 7) aga (0) [(1 = 1) (T2 — wli) + rgaga (0)] N1 (0)

6.9 Equalizing coefficients
6.9.1 «(1)’s coefficients

From (76), (77), (78) we have series of coefficients on ¢*, k4 and k. We also
get the coefficients in (92) which are all zero, and the coefficients in (97).
For the various variables s, the a; (0) coefficients have already been computed

in the first-order solution. We next asset the a; (1) coefficients, with the following

system:
aall) = ~roerzae (D
opa (1) = Q%Au>
o (1) = zoun (1)
0 = [agn (1) —7rgaqp (1) N1 (0)] +w (1 — 1) agp (1) — rqas 4 (0) cp (1)
a _ 1=y z aga (1) — rgaga (1) N1 (0)
. (1) g (1 ) - [quz47qA (0) —w(l— Tq)] aga (1)
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where we used:

0
0
Ny (1) =
XD (1)
A (1)
Focus on the coefficients on cross-country variables. We get:
1 1
0 = [agp (1) = rgagp (1) N1 (0)] + w (1 —ry) go‘qD (1) = rqas,qp (0) gan (1)
Using our results for V; (0), this gives a system of four equations:
[ 1 1
0 = it =) g = s 0) ¢ a1 (1) = ranen 0)asn (1)
: 1 1
0 = |1-rgpt+w(l—ry) g — 1q34p (0) g} azgp (1) = rqz 4 (0) aggp (1)
: 1 1
0 = |1—ryasp(0)+w(l—ry) £ 740340 (0) E} asqp (1)
: 1 1
0 = |1—ryoupa(0)+w(l—ry) £ rq03,40 (0) g} agqp (1)
As a3 4p (0) <0 and asip (0) € (0,1) and ay k4 (0) € (0,1), the last two relations

imply as,p (1) = agep (1) = 0, with the first two implying that oy ,p (1) =

az4p (1) = 0. Focusing to the coeflicients on worldwide averages, we get:

B 13 c 1—xn ~ 1
0 = e 0O - e 04wl )l aga 1)
.
_liflic 77<1_5)Tq05qA(1)N1(0>
This again gives a system of four equations:
c 1-— 1
0 = {1+ lf-flic 77(1_5) [1_TqP_TqO%qA(O)+W(1_Tq)]g] a4 (1)
1 —if 1 i Cl ; T (1~ &) ryanup (0) as ga (1)
[ c 1-— 1
0 = _1+ 1f-§1ic 77(1_5) [1_qu_rqa4,qA(0)+W(1_Tq)]g] a4 (1)
R f—fl i Cl ; ! (1 =) rgazka (0) gqa (1)
0 = :1 + 1 iﬁl i El ; 7 (1—¢)[1 —ryasip (0) =y qa (0) +w (1 —1y)] ﬂ azqa (1)
0 = _1 + ] f—fl i Cl ; 7 (1—2¢)[1 —ryaapa (0) —rgouqa (0) +w (1 —ry)] ﬂ aaq4 (1)
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As a4 (0) < 0 and azxp (0) € (0,1) and agxa (0) € (0,1), the last two rela-
tions imply asz 44 (1) = agqa (1) = 0, with the first two implying that oy 44 (1) =
244 (1) = 0. We therefore get:

agp (1) = arp (1) = aga (1) = ara (1) = aea (1) = 0 (98)

6.9.2 ;5 (1)’s coefficients

We now turn to the as, (1) coeflicients, with the following system (using (98),
which implies that N; (1) = 0):
£ ¢

asga (1) = TIr eI gl (1)

asia (1) = %a (1)

asp (1) = zas,n (1)
0 = asep (1) +w(l—rg)askp (1) = reaqp (0) N3 (1)
QA (1) = 0

The worldwide averages are easy. Turning to the cross-country differences, we get:

0 = angp (1) +w (1~ 1g) ~asgn (1) — ryagp (0) Ny (1)

3
1 1
0 = |[1+w(l—ry £ 03,40 (0) ¢ asqp (1)
As as4p (0) < 0 we immediately get a5 ,p (1) = a5 .p (1) = 0. We therefore get:
5,0 (1) = aspp (1) = @594 (1) = aspa (1) = @504 (1) =0 (99)

6.9.3 A(0)’s coefficients

We now turn to the matrices A (0). It is useful to split the matrices between
terms that we already know, denoted by "other" and terms that we still have to
solve for. From (76), (77) and (78) we get:

¢ ¢

Aa(0) = —m T EACA (0) + Aya (other)
Apa(0) = %AqA (0) + Apa (other)

1

f’AqD (0) + Agp (other)
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Using (89) and (92) we write:
0= A,p (0)—r,N; (0)' A,p (0) Ny (0)+w (1 —7y) Agp (0)—ryas 4p (0) Akp (0)— A, (other)
where:

Aer (other) =1, (1 —1,) N1 (0) [aga — (T2 — wly)] [gp — (I1 — wl3)] Ny (0)

(100)
Using (82) and (97) we write:
1
A (0) 7272 = A (0)F 0= 7g) = g0 (0] Aka (0
—14N1 (0) Ay (0) Ny (0) + Aea (other)
We start with the worldwide average coefficients, and write:
¥ 1 & c
Aea (0) —— = ——— Aca (0 101
A()l—vl—é 1+¢1—-¢ 4 (0) (101)
1 c
—w(@ = ry) = rgaaq4 (0)] 1——|—§1TEACA (0)
c
+TQ1L—|—§1——EN1 (O), ACA (O) Nl (0) + ACA2 (other)
where:

Acaz (other) = Ay (other) + Aea (other) — 1,Ny (0) Aga (other) Ny (0)
T (1= 1) = ry0ragn (0)] | Aca (other) + %AqA (other)
The relation (101) is of the form:
XaAea (0) = Acaz(other) + Ny (0)" Aea (0) Ny (0)
where Y 4 is a scalar and:

i e W (1= 7g) = rgaea (0)] TS

Ql

XA = g ¢
e
A, th
Acas(other) M
TeTie1—2

(101) is the implicit solution for the matrix A.4 (0). We solve it using a vectoriza-

tion method. Recall that if n;;’s are 4z1 vectors and A.4 (0) is a 424 matrix:
(n1,0) Aca (0) (n15) = [(n1,0)" Aca (0) (n1,)]™" = ([Aca (0)]")" [(n1) (na)']™
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Now consider a 424 matrix N; of which n; is the ith column. NjA.4 (0) Ny is then
a 424 matrix of which the ij cell (row i column j) is equal to (n1;) A.4 (0) (1)
Hence the ij cell is equal to ([Aea (0)]"°) [(n1,:) (n1;)']". We then write:

([Aca (0)]) [(n22) (na0)]™ ([Aca (0))") by

, vee _ | ([Aea (0)]7) [(m1,2) (nan)' ] | _ | ([Aea (0)]") k2
[Nl (0) AcA (0) Ny <0>] ([ACA (0)]1)60)/ [<n1’3) (n171)l} vec ([ACA (0)]’066)/ k?3

where each k; is a 161 vector that we compute from N; (0). (101) is put in a

vectorized form as:

vece

Xa [Aea (0)]" = [Acas(other)]"" + [Ny (0)" Aca (0) N1 (0)]
This gives a system of 16 equations:

Xa[Aea ()] = [Acas(other) [} + ([Aca (0)]") Fy
Xa[Aea ()5 = [Acas(other);™ + ([Aca (0)]") k2
Xa[Aea ()5 = [Acas(other)]5™ + ([Aca (0)]7) k3

Denote by I; a 16x1 vector with zeros everywhere and 1 in the ith column. We
then write: [A.4 (0)];° = (I_Z), [Ac4 (0)]7°. Our 16 equations then become:

(ra (B)' = (k)') [Aea (O))°° = [Acaslother)]}
Stacking these equations in a matrix form we solve for A.4 (0):

XA [Aca (0)]7° = [Apas(other)]” = [Aea (0)]7° = (X4) " [Acas(other)]"
(102)
where X4 is a 16216 matrix where the ¢ row is x4 (_fi)l — (k). Aea (0) is simply
obtained by "de-vectorizing" [A.4 (0)]"“. A 4 (0) and A4 (0) easily follow.
We next move to the cross-country differences:

0 = Aup(0)—7,N;(0) Ayp (0) Ny (0) + [w (1 — 7)) — rqa3.4p (0)] Axp (0) — A, (other)
= Agp (0) = 74N1(0)" Agp (0) N1 (0) + [w (1 = 74) — rgcr34p (0)] %AqD (0)
+[w (1 —ry) — rqas4p (0)] App (other) — A., (other)
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which we re-write as:

xpAep (0) = Agp(other) + Ny (0) Aqp (0) N1 (0) (103)
where:
 {Fw(l—ry) —reasep (0)
Xp = qu
Ap(other) = Aerlother) =[w (1= rq) = ry0s4 (0)] Ap (other)

T'q

This gives an implicit solution for A,p (0) which we solve using the same vector-

ization method as above, yielding:
[Aqp (0)]" = (Xp) ™' [Agp(other)]"™ (104)

where Xp is a 16216 matrix where the i row is x p (fi),— (k). Axp (0) immediately

follows.

6.9.4 [(0)’s coefficients

From (102)-(104) we can compute the values of ®,,; and ®.,; from (82) and
(89). It is again useful to split the vectors between terms that we already know,

denoted by "other" and terms that we still have to solve for:

Bua(0) =~ 2Ba (0)-+ By (other
Bra(0) = %ﬁqA (0) + Bya (other)
B (0) = %ﬂqD (0) + Byp (other)

/
, we also write:

Recalling that N5 (0) = ‘ 0 0 Byp(0) Bra(0)

0=—=PB,p(0) —w (1 =1y Byp (0) + 140340 (0) Byp (0) + B, (other)

where:

/

B., (other) = [N3 (0) + o 1 Not| (Per1 + DL,4) N1 (0)

1+ 2)%0)
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and:

B (0) T T = By (0) = [yt 0) = (1= 7)) By (0) + o other)

Starting with the coefficients for worldwide averages, we get:

Bea (other) = [rgauqa (0) = w (1 =7q)] Bya (other)
(1= [0 (0) = (1 = 10)] 1] B, (other)

1
DcA

Bea (0) = ] (105)

where:

4 {1  rgtagn (0) —w (1 —7)] ﬂ i

1
R
with 3,4 (0) and 3, 4 (0) following easily.
Turning to the cross-country differences, we get:
[ryctsn (0) = w (1= 7,)] Bup (other) + B,, (other)
1 —[rqas,qp (0) —w (1 —7g)] %

DCA

Bep (0) = (106)

with S, (0) following easily.

6.9.5 1 (0)’s coefficients

It is again useful to split the vectors between terms that we already know,

denoted by "other" and terms that we still have to solve for. Recalling that
!/

Ny(0)=10 0 ppp(0) pps(0) | we write:

B ) = e e (0) i Cother)

1
pra (0) = E[j’qA (0) + 1y (other)

fp (0) = %MqD (0)
0 = —pyp (0) —w (1 —7g) pyp (0) + 103,40 (0) pyp (0) + pe, (other)
B O 21 = 103 (0) = [y (0) =0 (1= 1) s 0) + s other)

where:

[&)”1] 11 + [&)erl} 2 [&)eﬂ] 12 [éerl} 21
4 (1+22%)

1

N3 (0) @, N3 (0) + ————
s (0) 13(>+2(1+2V@

N3 (0) (®ep1 + L) Not
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Starting with the coefficients for worldwide averages, we get:

fiea (0ther) — [rguaga (0) —w (1 —1q)] 4 (other)
+ [1 — [rg@a44 (0) —w (1 —1y)] %] fiya (Other)

1
DcA

fea (0) =

] (107

with D4 is as in (105), and 3, (0) and ;4 (0) following easily.

Turning to the cross-country differences, we get:

_ i, (other)
1-— [TqOég,qD (0) —w (1 — rq)} %

#qp (0) (108)

with p,p (0) following easily.

7 Overall solution

7.1 Third-order expected excess returns

While we have now solved for all coefficients in the first- and second-order
solution, this solution remains conditional on the value of A\ in (50).

Closing the model will require a solution for the third-order expected excess
returns. As shown below, we only need to solve for their linear component, which
we take from (30):

ey = (1 — 1) [atD-‘rl - Wkﬁl} + a0 — 4

The expectation for a Home investor is:
[Efjerﬂrl] (3)
= (=) |paf + B8] (8) — whf] - aF
: . : 9
1y [agn [E S| (3) + [ S] A S| (3) + g | B (2£1)°] (8) + ko

where we used () and the fact that S;11 and 2z, are independent. As detailed
below, our focus is on the terms where e/, enters linearly. It does not enter terms
set at time ¢, neither x7 ;. €/, also does not enter cross-product terms linearly,

such as S, AqpSii1. We therefore rewrite the third-order expected returns as:

[EtHjertH] 3)=(1-ry) [E,;Hjéfil] (3) + rqaqp [EtHjStH} (3) + other
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where other denotes variables where £, does not enter linearly. Using (57), we

focus on the terms of [Ef[ J Stﬂ} (3) where e, enters linearly:

|:EtHj€7"t+1:| (3) = (1 — Tq) |:Ef[]€£i_1i| (3) + TqCQyD (O) N2 [Eg{ji‘?t—s—l} (3) + other
= [1 —Tq + TqQ1,4D (0)] [[EtHjEILt_H} (3) — [EtHjEFi_H} (3)] + other
Using the results of the signal extraction, we write:

[EtHjETtH] (3)

)\2903 U%LH + J%{’FxD 1)
(1 + 2/\26)2 O%I,HO.%{,F !

2)\2903 EHt+1 _ €F,t+1] (109)

= —[1—=7ry+7r014p (0)]

+[1 =1y + 7140140 (0)]

1+ X0 (1—p,) U%{,H U%{,F

+other

Similarly, we derive:

[EtFjertH] (3)

AQGO'Z U%‘I,H +O-%{’F:UD (1)
(1+2/\29)2 U%{,HU%{,F !

2\*0o? EHt+1 €F,t+1] (110)

1+ X0 (1—p,) U%{,F O-%{,H

= —[1 =74+ 7ry014p (0)]

+[1—ry+ 1,004 (0)]

+other

7.2 Solution for )\

We now turn to the solution for A in (50). We combine the cross-country
difference in asset market clearing conditions (36) with the first-order average
portfolio share (48). Recalling that to a first-order the consumption of young
agents is the same for all agents in a given country, and using (68), the first-order
component of (36) is written as:

4z (1) = ¢ (1) + Ky (1) = 27(0) [ (1) + (1 = w) & (1)]
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Combining this with (48) we write:

%M¢(H4ﬂd) 270 [af (1) + (1 — w) kP (1)]] [Ee (erer1)?] (2)
= [EtHertH] (3) + [Et ert+1] (3) + 7P (3)

+ (=) [[Effriieria] 3) + [Ef i erin] (3)]
J = (B (ern)?] (3)dg

ke il CRC L

‘I'(l_TW HE_T (Ttﬁl)Qerﬂrl} (3)+ [EtF (7”211)267“&1] (3)]
J = (B (e )] (3) )
+ [ BRI B, ern )| (3)d)

— (111)

-7 (1 —=7)

where we used the fact that [EHJTHJ (1) = [EFthH] (1).

We can infer A from (111). The key aspect is that 7(3) and 2 can enter
(111) only in the same way as they enter 2P (1), otherwise agents could split 2 (1)
between its components. 5%11 clearly does not enter the left-hand side of (111), so
we focus on the right-hand side.

7P (3) clearly enters through the third-order expected excess returns, including
the iceberg cost, and in no other place. 2, cannot enter directly through terms
that are expectations of cross-products (as in lines 3 and following). Such terms
would only lead to variances of shocks, or the expectation of 5,{11 which is a function
of zP (1).

el | can only enter directly through the first-order component of private signals
(19)-(20). We know from the signal extraction problem that the coefficient on
private signals are second-order. Therefore, the combination of these coefficients
and e, is third-order. ¢/, then only enter directly through linear third-order
terms, that is the third-order expected excess returns. We can therefore focus on

the following part of (111):
0= [Elerii1] (3) + [Ef eriya] (3) + 77 (3)

We can focus on the linear component of third-order expected excess returns, as
again 63_1 only enter directly through the first-order component of private signals,

which is multiplied by second order coefficients.
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Focusing on the terms in (109) and (110) where productivity innovations enter

linearly, we write:

0 = [Effersa] (3)+ [Ef eria] (3) + 77 (3)
2)\2903 U%{,H + U?{,F D
1+2X%0 o3 yoty e

0 = [1— Tq + Tq®1,4D (0)] + TtD (3)

As ¢, and 77 (3) must enter in the same way as through (50), we replace
77 (3) by =447 (2) /A:

2\%00? 0%{,H+U%I,F p _.p 7(2)
L+2)0 ofpoy e 0 A

0=[1—r,+ 17,0040 (0)]

from which we get an implicit solution for A:

2 2 2
O+ 0up L+2X07(2)
1-— 0 : —\ =

[ T'q + T‘]OZLQD( )] U%LHO-%LF 2)\29 0.(21

(112)

8 First-order portfolio shares

8.1 Useful expectations

The solution for z”(1) follows from (49), requiring us to compute the ex-
pectation of several combinations of the average return and excess returns from
(29)-(30). We already now [E, (ertﬂ)ﬂ (2) from (60).

8.1.1 Third order expected excess return

The third-order expected excess returns enter (49) only in terms of differences,
[Efferyiq] (3) — [Eferyi1] (3). From the signal extraction we have shown that
agents agree on first-order expectations. Disagreements on the second-order ex-
pectations reflect the idiosyncratic component of signal, that adds up to zero in
each country. Different third-order expected excess returns then reflect the linear

component of (30):

eryrr = (L —1y) [[1 —wls] Spp1 + 14 [anStH + a57qpxﬂ1} - th

There is no disagreement on publicly observed variables, and on $£r1 as no

agent has any information on it. We therefore focus on:
_ D D
erep = (1 —1q) €41 + 1q0qp [NlSt + Nogp1 + Naxy ]
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where we used the linear component of (57). There is no disagreement on S; and

2P which are publicly observed, hence we focus on:
t ’
D
eryp; = (1 —1y) €41 T TqQgD

Taking the third order expectation for a Home agent, we get:

[EtHjertH] (3)
EfVel,| (3)
Efjftﬁl (3)

0
0

= (=) [EMeD) (3)+ a0 (0)

= (= 1y + g0 0)) | B, 3)

which we already computed in (109). Similarly the expectation for a Foreign agent
is given by (110). We therefore write:

[Efferia] (3) — [Ef eria] (3)
2)\290'3 O_%-I,F _O—%-I,H A

= 21— 0
[ Tq—l—rqm,qp( )] 1+2)\20 ‘7%{71{0%{,1? €iv1

(113)

8.1.2 First order expected average return

The first-order expected average return enter (49) in terms of the sum across
all agents: [Effr{|] (1) + [Efr{,] (1). We evaluate it using the linear terms in
(29):

7’211 =(1- Tq) [atA+1 - Wkﬁu] + Tq‘]ﬁu - CJ{sA

All agents agree on their first-order expectations. From the signal extraction
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we know that for any agent [Eiai,] (1) = pa;'. Therefore:

[Etrtﬁl] (1)
= (1-ry) [[Etaf-‘rl] (1) - Wkﬁl-l (1)]
+7q [O‘MA (0) [Etaérl] (1) + a4 (0) t+1( )} Q{eA (1
(1= 1y 7401204 (0)] p = 12,04 0) ] "
+[rgaga (0) —w (1 = rg)] 24 (0)
+ [[rgaaqa (0) —w (1 = rg)] v a (0) — g ga (0)] ki (1)
= azera (0)a; (1) + auera (0) K (1)

)

8.1.3 Expected 1 (eryi1)?

We next turn to [Efjrﬁl (ertﬂ)z} (3) and [E rity (ert+1)2] (3). These entail
cubic product, and can then be evaluated using only the linear components of (29)
and (30). Specifically, we use the fact that first-order expectations of the average

are the same for all agents to write:

rﬁu = (1-ry) [aiAH - Wk{éu} + quékl - qu,4

= [Eria] (1) + [1 = rg+reanea (0)] ey

Recall that for all agents first-order expected excess returns are zero, hence using
(58):

0 = [Etertﬂ] (1)
1—r,+r,« 0
_ q q 21,qD( >$? (1)
1+ 2)°0

+[1 =g+ g0 0 (0)] pa” (1) + [rgas gp (0) — w (1 —rg)] k2, (1) — ¢ (1)
The actual excess returns are then:

€Tyl
= (1=ry) [afy —wky] +reaf —
= [1—ry+ryaqp (0)] el + ryasqp (0) x2, (1)
+[1 =g+ rga1,40 (0)] pay’ (1) + [rgasp (0) — w (1 =) ki1 (1) — ¢ (1)

1—r,+ qu;l,qD <O)a:f) 1)
14+ 2M°0

= [1—=rg+ 140140 (0)] 5£r1 + 740540 (0) xtD+1 (1) -
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We can the write:

7’211 (ert+1)2
[Eirii] (1) (errpa)* + 11
[Etrﬁi-l} (1) (€Tt+1)2

[[1 —1¢ + 140140 (0)]

—7q + g4 (0)] 5Z4+1 (67t+1)2

—2[1

— 14+ 1401,4p (0)]

2
D 12 1-rq+rqa1,40(0) .D
gt—i-l} +[ 1+2)20 Ty (1)
1-rg+rqa1,qp(0)

+[1 - Tq + Tq0i244 (0)] 624+1

1+2X220 )
+ [rgs 40 (0) 2 (1)]

EtDJrlxtD (1)

+2r4054p (0) 214 (1)

We now take expectations from the point of view of

[1 —rg+rq01,4p (0)] 5tD+1+
_ 1—rg+rq01,4p(0) xtD (1)

142220
a Home investor. We al-

ready now [E; (ertﬂ)z} (2) from (60). We know that [Ejef,] (1) =0. AszP, (1) is

Hj_A

D
€t

independent from £} ;, we get [E (25,

0, and similarly [Engtthth ] (3) = 2P (1) [EHJéttH}

(3) = [EH]5t+15t+1

Using (58) we also get [E 5f+leﬂrlxﬁ1}

0. From the signal extraction:

Hj A D
[E P

| @)
2f (1) B eel] @)

(1) 3

0

Finally, using the results from the signal extraction (namely that [E

)2] (3) = [Et5t+1] 1) [ ¢ (It+1)2} (2) =

(
[EHJ%H] 1) = 0.
@) B2, (1)

1)
] _

B enen)’] @) = [ (eren)?] )]

M (ean)’] (3) =

— B (eren)’] 8) and [EY (1) e ] 8) = = [Eemann (eren)’] 3),
we get:
2
[EtH]ngH [et34] ] (3)
1 .
= 5 [B [lemnl® + lemnl® — envn [emn]? = lennl* eren] | 3)
= 0
We then get:

B (ern)?] 8) = [Bard] (1) [Be(ernn)’] (2)
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which applies to all investors in the Home country. Following similar steps, we find
that [Effr;il (emlﬂ (3) = [EHJTM (ert+1)2] (3).
At this stage, we can evaluate the following components of (49):
(=7 [[Effria] (O + [EfrfL] ()]
aoy | TR E )] @)
(1= N ,
 prnon B (eran)’] (3)d
= (=) [Bria] () [27 = 7 [Bi (eren)’] (2) 27 (0)]
= 0

where we used (95)-(96) to solve for z” (0).

8.1.4 Expected eryq(ri;)?

We next turn to [EtH (7“;11)2 ert+1} (3) and [Ef (rﬁH)Z ertH] (3). These entail
cubic product, and can then be evaluated using only the linear components of (29)
and (30). Notice also that we can focus on the terms that are different between the

two. We again split terms between their expected and unexpected components:

M (r) era | (3)
= B[] (1) + (1= rg + rg0200 0)] 4] eriea] (3)
= [[Brla] ) B erea) (1)
(1= 1y + ryanen (0)2 B [[e;}H} ? ert+1] (3)
+2[Egrfy] (1) [1 =1y + 740004 (0)] B [ef1erea] (2)

As E™ [er,41] (1) = 0 this becomes:

[Ef[j (Tﬁrl)Q e7’t+1] (3)
= [ =7yt 1020 OF B [[4] ersa] 3
+2 [Etrés—l} (1)[1- Tq + TqQ294 0)][1 - Tq + Tq(1,4D (0)] [Eg{jgﬁ—legrl] (2)

2 [Birfa] (D) [1 =y + 740200 (0)] rqcis g0 (0) Bf [24,] (1) | Bl (1)
1—=rg+reoen (0)
1+2)%0

2 [Bira] (1) [1 = 1y + 140004 (0)) P (1) [Ee,] ()
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As [EtngfH} (1) = [EHjxﬂl] (1) = [Efjafﬂsﬂl] (2) =0, we get:

[EH] (Tﬁu) 67“t+1] (3)

= [1—7ry+ 714004 (0)°E “524“] 67“t+1] (3)
2
= (1= 1y + 10200 O [1 = 7+ rg0100 O] | B [4]" R (3)
2
+[1 - Tq + TqOl2 44 (0)] T'q®5,4D (0) [EHJ 524+1} } [EHthH] (1)

1=y + 10140 (0) [ =g+ g0z (0)]2f (1) EfY [(5t+1)2] @)

1+2)%0
From the signal extraction results, we get:
2 1
EH] [( t+1) ] (2) = 502
[Eg{j [524+1} 52&] (3) = ZEtH] [(5H,t+1)3 - (€F,t+1)3 — &+l (€F,t+1)2 + (5H,t+1)2 (€F,t+1)] (3)
1 2D
= 1
2 (1+2X%) ' @

Therefore we get:
[Ef] (rf)” 67"t+1] (3)=0

The expectation is the same for all investors in both countries.

8.1.5 Expected ert+1rﬁl

We next turn to [Efr{ eri1] (3) and [Efr eriy1] (3). Notice also that we
can focus on the terms that are different between the two. (29) and (30) entail
linear and quadratic terms, so their product entails quadratic, cubic, and higher
order exponents. As we focus on the third-order terms, we limit ourselves to the

quadratic and cubic terms, and write:

A
Ti11€Te+1

[ (1 =) [afﬂ - Wkéu] ] [ (1—1y) [atDJrl - Wk’grl] ]

+7”qq£+1 - QZ4 +7’qq£r1 - QP

+Tq (1—ry)

[qékl at+1 + Wk’tﬂ] ]
2

9
+3[afy — aly + wkf]

(1 =rq) [0y — whi,] ”

‘H”qqu - QtD

try (1—1,) (1—rg) [atAﬂ - Wkéu] qu‘H a24+1 401 — af
q q
+rqq£+1 - qf‘ +Wkt+1 +Wkt+1
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We are only interested to the differences across agents’ on their expectations of
this expression. The cubic products entail only the linear part of (29) and (30),
for which there is no disagreement as agents agree on the dynamics of the state

variables and the first order expected innovations. We can therefore focus on:

A
Tii1€Teq1

(1—r,) [aﬁH — wkﬁl]
‘anqal - QZ4

(1 —ry) [afy — wki] ]
+qutDJr1 —qf
(1 —ry) [l2 — wly] + rqagal Ser + reas garfy
7 [ St AgaSes + BuaSecaabi + tga (28)" + Ko - af ]
[(1 = rg) [[1 — wls] + 404D S+1 + TqO‘S,qugkl
T [S£+1AqD5t+1 + BypSerief + gp (28)” + ’qu] —a ]

We can ignore the brackets that include cross-product, as they will only enter as
cubic products of linear terms, on which there is no disagreement. Similarly there

is no disagreement on the 22 ;. Thus we focus on:

!/
g [ (1 =ry) o~ L) ] [ (1 =ry) [h —wl) ] 5
= Ot t+1
+re0qa +7ry04D
—a [(1 = 1g) [I2 = wli] + 1q04a] Sea
_th (1 = 7g) [[1 — wls] + rgagp] Se1 + Q;‘QtD
qi'qP are publicly known at time ¢ and there is no disagreement on them. There is
also no disagreement on the first- and second-orders of Sy, as seen from (73) and
(79). Notice that there is disagreement on the second order innovations in Sy,
as seen from (80), but this disagreement adds up to zero across agents of a given
country.
Therefore there are no sources of disagreements between Home and Foreign ag-
gregate third-order expectations of 17} er,1, hence [Efr jeri 1] (3)—[Efr{i eria] (3) =
0.
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8.2 Cross-country difference

Using our results so far, (49) simplifies to:

vz (1) [B (erin)’] (2)

- [EtHertJrl] (3) — [EtFertJrl] (3) (114)
o | [ B 5 ] @i - [ EE D[ ] 314

The first-order difference in portfolio shares reflects different expectations in third
order expected excess returns in the two countries, different changes in financial
frictions, as well as the expectations on time varying second moments, the latter
being fully summarized by the third-order terms of the variance of excess returns.

Intuitively, the difference in portfolio shares reflect expected excess returns and
frictions, scaled by the variance of the excess returns. The terms above show
that movements in each of these leads to variations in the first-order difference in

portfolio shares.

8.2.1 General expression for [EtHJ (ertH)Q] (3)

The last step in the analysis is to solve for the last row in (114). We start by
re-writing (30) as:
erier = (1—rg) [pa? + 53—1} — [w (1 = rg) aup + agp] S
— w1 =7y) asrp + as4p] T + T40qpSir1 + T 4D T
— (1 —ry) [kep + wEiD]
—Si[w (1 —ry) Axp + Agp] St — [W (1 —=7¢) Brp + BqD} Siy
2
- [W (1 =7q) pup + MqD} (x?)
2
+S£+1(I)erlst+1 + Hert (xtD-',-l) + BeﬂStJrlowrl
where @, is defined in (89), and:
s g4 [@qp — (11 — wl3)]
+asgp [aga — (I — why)]

Her1 = TqllgD + Tq (1 - rq) A5 qAQ5 gD (116)

ﬁerl = 7aqﬁqD + T'q (1 - Tq) (115)

Using (57), we write:

ery1 = [lin_er|, , + [quadr_er], 4
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where we used the fact that as we are only interested in the third order terms in

[Ef[ J (ertﬂ)z] (3) we limit ourselves to the linear and quadratic terms in er;;q,

defining:

[lz'n_er]t+1 = (1—-ry) paz? +{rqaqpN1 — [w (1 = r¢) arp + agp]} S
+{ryagpNs — [w(1 — 7)) aspp + as o)} oF
+(1—ry) 5£L1 + 7q0ypNoci1 + rqoz57qu£r1

and:
0
[quadr _er| = ryaup | Ny (xD)2 + NSzl + 0
_€Tli a%q ¢ ¢ SI NS
S; NS,

+ryogpk — (1 —1y) [Kgp + WEED]
—Silw (1 =) Akp + Agp] S — [w (1 = 74) Bup + Byp] Set’
2
- [W (1 —7rq) pyp + #qD] (33?)
/ D \2 D
+81 1 Per1 St + ey (2701)" + Bert Ser1Ta

We therefore write:

[ erean ] (3) = [BI" (1im_er )*] )42 [B" ltim_er], .y lowadr_er),.] 3)
(117)

8.2.2 The squared linear component

We evaluate the [Efj ([lin_er]tﬂ)ﬂ (3) term in (117) as follows:

{9 (tin_erl,11)°] 3
_ :Varf{j [lm_er]tﬂ} (3) + HEfJ ([lin_er]ﬁl)} (3)]2

= Varlin_erl, | (3) +2 || B (lin_erl,,)| @] [[B (in_erl,,.) | (1)]

Notice that [EtH J ([lin_er], H)} (1) is simply the first order expected excess return,

which is zero for all investors. The variance of terms known at time ¢ is zero, hence

7



we write:
Vart lin_ er]tH] (3)

= Vart [(1 ) 6&1 + rqgpNagri1 + Tqa5,qu£r1]] (3)

= Vm"t Ul —1q +1q14p (0)] 5tD+1 + 740540 (0) xtl-)q-lﬂ (3)

where we used (98) and (99). As ¢7; and z,, are independent, this becomes:

[Vart [lin_ er]tﬂ} (3)
= [1—rg+reaiqp (0 [ art’ B } (3)
T (rgason (0))° [Varf [2£,]] (3)
As shocks are exactly limited to second-order components, [Vart [:Ct “” (3) =0.
In the signal extraction we showed that the investors’ inferences of the variances of

productivity innovation do not have third-order components: [Vart [5t HH (3) =

0. Therefore we get:
[EtHj ([lm_er]tﬂ)Q] (3) = [Vart [lin_ er]tﬂ] (3)=0

8.2.3 The linear-quadratic component

We now turn to [Ef] [lin_er], 4 [quadr_er]tﬂ] (3) in (117). As it is a cubic
products, it only involves zero-order coefficients. From the zero-order solution we

write:

[lz'n_er]t+1 = (1—ry) pa,{j +

74 [p010 (0) + 34 (0) a1 4 (0)] ] D
~ (1= r) a1 (0) + argn (0)] |
(0

rqlasgp (0) az o (0)]
—[w (@ =ry) azrp (0) + az4p (0)]

rq3,4p (0) 5,0 (0) D
i { —w (1 = 1g) asrp (0) — as4p (0) } !

+[1 =1y + 140140 (0)] 51&1 + 7140540 (0) $7P+1

+ kP

Using (70), (72) and (71) this becomes:

_ 1 —ry + 140140 (0)
t+1 1 + 2)\29

[lin_er] xy +[1 = rg + rqangp (0)] €0y +7q05 40 (0) 2004
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Notice that for all investors this is zero in expected value, as first-order expected

excess returns are zero. We can therefore ignore the terms in [quadr_er], ,

that are known at time ¢, as they interact with [Ef{ Tlin_er], +1] (1) = 0 in

[EtHj lin_er],,, [quadr_er]tﬂ] (3). We therefore focus on:

! 2
lquadr _er],y = Si1Per1Ser1 + fem (xtDJrl) + ﬁer15t+1$£r1
which leads to:
[Ef[j [lin_er]tH [quadr_er]tﬂ] (3)

1 —r,+rya140(0) , e 2
= - 1+q)\26 (ql _qu) xt (1) [E ! |:S£+1 erlSt+1 +:uer1 (xtl—)i-l) +ﬁerlst+1xtD+1]:| (2)

+7qQ5,4D (0) [Et ]$t+1 |:St+1(1)erlst+1 + Ler ($t+1) + BerlSt-f-lxtD—&—l:H (3) (118)
1= 1y + 701,00 O)] [ Bl [Sa®@enSin + ttens (052)” + BennSinaa || (3)

We start with the first term on the right-hand side of (118). Using (58) and the
fact that Sy41 and x,; are independent, we get: [EtH J Si171 | (2) = 0. Therefore

the term becomes:

1 —r,+rya14p(0) Hi o
_ ‘1 - 2‘1/\28‘1 xtD (1) HEt JSt+1(I>er15t+1} (2) —+ ,uer12 [1 + 220 (1 — ,OT)] Ui}

where [E{IjSQHCDMStH} (2) can be computed following (81).

Turning to the second term on the right-hand side of (118), we use (58) to
write: [Efjxgl [s;+1q>erlst+1]] (3) = [Efjxgl} (1) {Effjsgﬂq%ﬂsm] (2) = 0.
Furthermore, using (58), we get:

[EtHj (xfil)g} = [Ef] (:L‘gl)r +3 [E (xtﬂ)} VarH (xt[jrl) =0

Therefore the term becomes:

745,40 (0) Bepy [Efj (mtDJr1>2i| (2) [EtHjStJrl] (1)

g [ N1 (0) S; (1)
= TqQ5,4D (0) 667“12 (1 +2 ) %a + {NZWL + N3 (O)} xtD (1>

We now turn to the last term on the right-hand side of (118). Using (58)
we write: [E %BrlﬁeTlStthDJrl} (3) = EtHjeﬂlﬁerlStH} (2) [EHJQZEH] (1) = 0.
Furthermore: ]

|EM=R (00.)7) (3) = [B (e£.)"] @) [Blel] (1) = 202 (1)
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Before proceeding, we write two useful expectations, which are the same for any

investors in any country. First:

|:EtHj€t+1€tD+l:| (2)
EtHj (gH,t+1)2i| (2) - [Eg{ng,t—i-lgF,t—i-l (2)
Ef[ng,tJrlSF,tJrl} (2) - [EtH] (eres1)’] (2)

1 2 220,
12 (1+2x29)° () + 1 +2A290“]

where ¢ = |1, —1|". Second, using the definition of Y- N}®,1 Ny similar to (81):
[E{“g; HN;cI)eTlNQetHsgl} 3)

. [ci)er1:| |:<i)er1:|
= |Eein [i) }11 [é }12 err1€i | (3)
erl 91 erl 99

= |®en| B [(ener)’] )+ ([®en] + [®en] = [®en] ) EP [(emen) erusa] )
+ ([&)erl] vy |:(i)e7‘1i| by [&)erl] 21) EY [emis (5F,t+1)2} (3) — [&)erl] ”s E[V [<5F,t+1)3] (3)

Using the results from the signal extraction, this becomes:
[Efj52+1Néq)erlN25t+15£|-1} (3)
_ z % Hj 3
N <[(I)erl] 11 + [¢6T1L2> B [(enen)’] (3)
+ (2 <|:§)er1i| + [éerl] ) — ([éerl] + |:(i)er1:| )) EtHj |:(€H,t+1)2€F,t+1] (3)
12 21 11 22

- ( [El]l]z:[;l}lil (2 (1 +12>\29) z )

i 5 1+4)2%0
(|:¢67’1:| 1 + |:¢€7‘1:| 2) 1+2>\29 1 D 2

+ 9 — T, 0,
+ ([q)erl + |:(I)€T1 > T2 2 (1 + 2)\29) t
12 21

14+2X2%6
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Using these results and (57), we write:
[Eﬁjfﬁlséﬂ(berlstﬂ} (3)

= [N1S, + NyzP]' Bery [N1S, + Nz [Efjggl] (1)
+ [NiSi + NoaP) (@t + @) Na [ o168 | (2)
+ [Etng;HNéq)eﬂNzEtH&?gA] (3)

= [NiSi+ NoaP] @ [0S+ NowP] ————aP

1+ 22"
1 2 2\
+ [NiS; + N3] (@er + @Lyy) Not | ————5 (2P)” + —g0?
[ 10t 3t:|( 1 67“1) 2 2(1+2)\29)2(t) 1_|_2)\20(l
i)erl:| + |:(i)er1:| 1 ’
+2 |: 5 1 5 2 —2‘%?
- [q)erl - |:q)er1 2 (1 + 2/\ 0)
12 21
0 5 144220
+ ([Cberl} 1 + [Q)erl] 2) L+22%0 ;xDo'2
7 5 1-4220 2p) 7t T
+ ([q)erl} 12 * [q)erl 21) 1+2X%0 ’ (1 2 9)
Putting our results together, (118) becomes
[EtHj [lin_er], 4 [quadr_er]tﬂ] (3) (119)

= q)LQX$? (1) o2 + ProsSe (1) o2

where we used Nov = 2 (I1)', the solution for as,p (0) in (71), (81), and:

|:(I)e'r1:| 1 + [(I)erl] 9 2)\292
-~ = 1+22%6
Bror — 1 — 7, +rya14p (0) - <[‘I)er1 L [‘PMLJ
N 1+2)% FANOT, Dy + P,1) N3 (0)
rq2(142X20) 1 /
L +1+[(1_7’q)"~’_7"q0¢3,qD(0)]%Berl [m (Il) + N3 (0) _
I (P + ©,1) 2070
1—r,+ra 0 1\ Ferl erl
D5 = q 1,40 (0) ra(142X26) Ny (0)

1+ 2)2%0 +

lﬁerl

1+[(1—7‘q)w—7'q013,qD(0)] 3

8.2.4 Further simplifications

The coefficients in (119) can be substantially simplified. We start with the
A,p (0) matrix which solves (103). A,p(other) consists of A, (other) and Agp (other).
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Ayp (other) is given by (78):

Agp (other) = 5%1

a1,4p (0)

¢-1
3

|
o o o o
o 8 O 8
o o o o

0

0637qD (0

0

O 8 O K

al,qD (0) [1
+as,p (0) I3

g (0) I ]

+ (0147]9,4 (0) — 1) ]4

‘ 0 Q2 kA (0) 0 Q4. kA (O)—l ‘

where the x’s denote non-zero elements (which need not be equal to each other).
A., (other) is given by (100). Using the solution for N; (0), we can show that:

A, (other) =

It follows that the form of A,p(other) is

A,p(other) =

8 O &8 O

8 O 8 O

o O o O

o 8 O 8

8 O 8 O

8 O &8 O

o O O O

o 8 O R

(120)

Notice that if a matrix A is of the form (120), its transposed is also of that form.
In addition AN; (0) is also of the form (120), as is Ny (0)" AN, (0). As A,p(other)
is of the form (120), (103) then implies that A,p (0) is also of the form (120).

We next turn to ®.,;. Using (89) we write:

(I)erl = A <)+TCI<1 )[an(())_
0 0 0O
zr 0 x 0
A,p (0) +
el O+ 00 g
z 0 x O
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As A,p (0) is of the form (120), ®., is also of that form. Now recall that Q:)erl =
N}®.,1 Ny, which implies:

| = (@ + m;ﬂm +% {@m]m . [%;]ﬂ
], = et T g |
| = _[%]n_[<I>e;1]12+ﬂ[%21 [@S]ﬂ
:‘i’en: 22 - [(I)erl]n B % +% [_ [(1)67”1]21 + [(1)651]22}

We can then write:

where [®.,1],; = 0 because ®.,; is of the form (120).
As @, is of the form (120), ®.,1 + P, is also of that form. Using our solution

erl

for N3 (0), this implies that (@ + ®,,) N3 (0) is a 4x1 vector with a non-zero

erl

element only in the third row, hence
I ((I)erl + CI)lerl) N3 (0) =0

Also, (®ery + PL,;) N1 (0) is of the form (120), hence I (Pery + DL,.;) N1 (0) is a 1x4
vector of with non-zero elements in the second and fourth columns.
We now turn to the f,,; vector. As as44(0) = 0, (115) implies that j

consists of 7,3, (0) and a 1x4 vector of with non-zero elements in the second

erl

and fourth columns. (106) shows that 3 p, (0) is a combination of 3, (other) and
B., (other), where:

£€—1

Brp (other) = : as.40 (0) [k (0) I + (g ra (0) — 1) 1]
1 , ’ ,
b other) = |y () 4 NaO)] (@i + 840) 33 0

Bip (other) is clearly a 1x4 vector of with non-zero elements in the second and
!/
fourth columns. As (®.,1 + @) N1 (0) is of the form (120) and [;Il + Nj (0)]

erl 1+2X1%6
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is a 1x4 vector of with non-zero elements in the first and third columns, we get
that (,, (other) is a 1x4 vector of with non-zero elements in the second and fourth
columns.

It then follows that f3,,, is a 1x4 vector of with non-zero elements in the second

and fourth columns, and so is 3,,1V; (0). This implies:

Bert [ (L) + Ns (0)] =0

14222
Using these simplifications, (119) becomes:
EtHj [lin_er], 4 [quadr_er]tﬂ} (3) = ProsSi (1) o2 (121)
where:
1 —ry+rya1qp (0) I (®err + @) 220

L rq(142220)
1+ 2)40 + 1+[(1—rq)w—rqa3,qD(0)]%Berl

Dros = Ny (0)

As ®1¢s is a 1x4 vector of with non-zero elements in the first and third columns,
only the worldwide averages of the state variables (a! (1) and k7 (1)) enter (121),

with no role for the cross-country differences of the state variables (a” (1) and

kY (1)).

8.2.5 Solution for the cross-country difference

Putting all our steps together, (114) becomes:

[ngertﬂ] (3) — [EtFertJrl] (3)

2P (1) = . — 2P > 122
W e @ OEeaie W
where:

[E, (eree)’] (2)
_ (1 —rg+rgaigp (0))2 2 Tq : 2
=2 1+2)%0 2X°0 + <1+ (1 —7y)w— 140340 (O)}%) %a

and:

2 2 2 2
2XN00, Ouwr —Ohm 4
1
1+2)\0 o} pote

[Eflert+1} (3) — [E_’tFert-i—l} (3) =21 = rg + rg01,4p (0)]
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8.3 Worldwide average

The worldwide average of the portfolio shares follows from the first-order com-
ponent of (36):

4z (1) = ¢ (1) + k1 (1) = 27 (0) [af” (1) + (1 = w) K (1)]

Using (71) and (72) we get:

) = [P a0 -2 0o ()4 s 02 1) (129
+1 |14 a0 - O (- 0| 12 )

(123) gives the average first-order portfolio share from an asset supply perspective.

To obtain the share from an asset demand perspective, we use (48). From our
results above, we know that [Effr\,] (1) = [Efr/,] (1) and [Efj (rﬁl)z 67“,5+1} (3) =
0 for all Home and Foreign investors. In addition, [E,f{ J (ertﬂ)?} (3), [EtH Irf (ertH)Q] (3)

and Efjrﬁlert+1} (3) are the same for all agents. As z# (0) = 0.5, (48) becomes:

[Eferi 1] (3) + [EFeri1] (3) 7 (3)
2y [Et (67“1:+1)2} (2) 2y [Et (ert+1)2] (2)
1— v [Erferia] (3)
Y [Et (67"t+1)2] (2)

(1) =

+

As rgi = rﬁl + 0.5ery 1 and rpiq = rﬁl — 0.5er4 1, we get [vary (Tais1)] (3) —
[vary (rpe)] (3) = 2 [Eyrieria] (3), which implies:

[Eferiiq) (3) P (3)
v [Et erei1) } 27y [Et (eris1) ] (2)
7 [vary (Tﬂm)] (3) = [vary (rpe)] (3)
v 2 [Et (67“t+1)2} (2)

(1) (124)

9 Algorithm for numerical solution

The numerical solution for the model can be computed following the following

steps.
1. Pick values for p, w, 0, €, 02, 0%, O4p, 0, T(2), p..
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10.

11.

12.

13.

14.

15.

10

Get the zero order solution from (25), which gives ¢ and 7.
Solve for a1_54p (0), @1-5xp (0), @1-5.p (0) from (68), (71), (72).
Solve A from (112).

Solve for o544 (0), 1544 (0), @154 (0) from (67), (66), (65).

Solve |E; (ert+1)2] (2) from (60), and [Efferyyq1] (3) — [Eferyyq] (3) from
(113).

Solve for zero-order portfolios from (95) and (96), along with the cross-
sectional dispersion of portfolios [ (2, (0) — zx (0))?dj, a useful measure

of the consequence of info dispersion.

. Solve for A.4 from (102), 8.4 from (105), p.4 from (107).

Solve for A,p from (104), 38,5 from (106), u,p from (108).
Solve for N from (74).

Solve for the A’s, #’s and p’s for ¢ (from (76)) k* (from (77)), kP (from
(78)).

Solve for ®,,; and ®,,2 from (82) and (88).

Solve for ®.,; from (89) and 3., from (115).

erl

Solve the ®’s from (119).

Solve for 2P (1) from (122), and 2;* (1) from (123).

Balance of Payments Accounting

10.1 National savings and investment

In period ¢ the old Home agents enter the period with the following quantities

of equities (we abstract from j indexes as we focus on first-order aggregates):

H —
Gher =

ZHt—1 (WH,tq - Cgftq) (1 - ZH,tfl) (WH,H - CyH,tA)

H —
Gri1=

QH,t—l , QF,t—l
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The consumption of old agents is the total return on their portfolio. The income
of old agents is the dividend stream they receive, while capital gains and losses are
not counted as income streams in national accounts. We also consider that income
is net of depreciation. The savings of the old Home agents are then (we ignore the
iceberg cost on holdings of Foreign equity as it represents a source of income for

intermediaries that is fully consumed, and thus does not affect savings):

Slo= [(1—w) Ay (Kpy)™ = 0Que] Giiys
+ [(1 = w) Apy (Kpy) ™ = 0Qpy) Gﬁtfl
- (RH,tQH,t—ng,t—1 + RpyQri—1Giy_y)
= _QH,tGg,t—l - QF,tGﬁt_l

Q 3 Q i
B ‘{ZH]-,H T (1= zmj01) 5o | (Waeer = Cpy)
Qmi—1 Qri-1

The dissavings by old agents reflects the liquidation value of their portfolio. Na-

tional savings in the Home country are:

Quy

Qr,
= Whs— Cﬁt — |:ZH,t1Q + (1 —zgi-1) ki
Hi—1

Fi-1

] (WH,tfl — Cft@f?@
Investment in the national accounts is also defined as net of depreciation:
It =Ty — 0Ky = Ky — Ky (126)

The corresponding relation for the Foreign country are:

StF = Wpge— ngt — |ZFi-1 Qi + (1= 2zpi-1) Qr (WF,t—l - C'?ft_(ll)27)
Q-1 Qri—1
I = Ipy— 6K (128)

Using (21) and (22), the values of world savings and investment are equal: S} +
SE = Qualift + Qrelp.
The first-order component of (125) is written as:

sp (1) = %_AwH,t 1) =7 f “Acy; (1) = 2 (0) Agury (1) = (1= 211 (0)) Agry (1)
= % [Aap (1) + (1= w) Aky (1] = § f -

—21 (0) Aqry (1) = (1 = 21 (0)) Agry (1)

Acﬁt (1)
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where s? (1) = SH (1) /[(1 — ¢) exp [w (0)]], and Ag; (1) = g; (1) — g;—1 (1). Using
(68) this becomes:

) = 1 [Aaf (1) + (1 - ) AR ()] = = A, (1)
8P (1) + (1 - ) ARP (1)] - Ag? (1) - D g 1)
= . (0) AS; (1) — ZDQ(()) AgP (1) (129)
where:
@ = |27 Top0nea 0) — aga O Bt 5+ (1) 1
#0000~ 0 ) 1

Similarly, the first-order component of (127) is:

ot (1) = 0 0) 85, (1) + = Pag 1) (130
where:
ar®) = |11 om0 0) — aaa O] L= S+ (A=)
#0000 1

Taking the difference between (129) and (130) we get:
s (1) = Aag’ (1) + (1 —w) Ak (1) — 27 (0) Agy” (1) (131)

Using (8), the first-order component of (126) is:

4 (1) = Ao (1) = zam (1) (132)

where i}t (1) = Ig7f (1) /exp [k (0)] = I5% (1) /[(1 —¢)exp [w (0)]]. Similarly, the
first-order component of (128) is:

i%ﬂ)z%wﬁU (133)
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10.2 Capital flows

A useful measure is the passive portfolio share that combines the steady-state
holdings of quantities of assets with the actual asset prices. For Home investors,

we write:
- zp (0) exp [qu 4]

2 (0)exp g + (1 — 21 (0)) exp [gr]
The first-order passive portfolio share is the same for all investors:

2= O g (134)

Taking the difference between the first-order components of (21) and (22), and

P
RHt

using (68), we write:
g (1) + ki, (1) = [af (1) + (1 = w) kP (1)] 27 (0) + 42 (1)

Next, we take the difference between this relation and its lagged value and use
(131) and (134) to obtain:

i " (1) =27 (0) 57 (1) = 4 [Az (1) — Azf (1)]

Gross outflows and inflows are the change in the value of cross-border asset

holdings, evaluated at current asset prices:

OUTFLOWS, = Qr (GH, —GH )

Qr,
= (1 - ZH,t) (WH,t - Cﬁt) - QFI:1 (1 - ZH,t—l) (WH,t—l - Oft_l)

Qi

- RFt—1
Qi1

Using (129) and (134), the first-order components of gross outflows is:

INFLOWS; = zp (WF,t - C;t) (WEFl B O;jt—l)

out flows, (1)
= e (1) + (1~ 2 (0)) 7 [Basge (1) + (1 - ) Ak (1)

C

—(1=2u(0) 5 Acyy (1) = (1 = 21 (0)) Agry (1)

= (12 (0)) s (1) [Az (1) — A (1)] — AP (1)

— (1= 2y (0) s (1) + 2 2<O) A[gf(et:te?)gl])]( 5

2)
B AEer,1(3)7 B lA [Efferya] (3) — A [Ef eryq] (3)
v [Et (ert+1)2] (2) 2 Y [Et (€Tt+1)2} (2) (155)
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where we used (122) and we defined:

ABery,(3)1S = 1 LB (eri“ﬂ 2) [iP(1) — 22 (0)sP(1)]

Similarly, the first-order component of gross inflows is:

inflows; (1)
= =p(0)sF () + [A5 () - A ()] - 2AP (1)
22 (0) A [var, (eri1)] (3)
2 [Et (ert+1)2} (2)

AEery,1(3) 1A [Efferia] (3) — A [Ef eryi4] (3)

= (=2 (0)) s/ (1) +

v [E(er)?] (2) 2 v [E(eri)?] (2)

Combining (135) and (136) we write:

out flows; (1) — inflows; (1) = % [Sf) (1) — Pt (1)}
out flows, (1) + inflows, (1) = (1—2"(0)) s (1) — Az (1)
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