A Mathematical details

This appendix contains the detailed derivations of many of the results discussed in the main text. Results

are derived in the order they appear in the text.

Derivation of equations (8) through (10):

Since all factor inputs as well as the price can be costlessly adjusted and capital is rented rather than owned,
in every period the firm decides on the factor inputs, k;; and l;;, its price, p;¢, and its output level, y;;, that
maximize its flow profits (6), subject to the technological constraint reflected by the production function (5)
and the market constraint represented by the demand function (4).

The associated Lagrangian is
(72) Lit = [pityir — wilie — (1¢ + 0)kit]
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The first order necessary conditions implied by this objective function are

(73) w.rt yip Dit = Adt + Ayt
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Condition (74) implies that
(77) Adt = (1 —0) pir
Combining this with (73) yields that
(78) Ayt = Opiy
When we substitute this into the optimal factor demand conditions, (75) and (76), we find
(79) weliy = 0 (1 — &) pirysr and (14 + 9) kiz = aOpiryir
We can use these results to solve for the optimal capital labor ratio, which satisfies
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The price level, p;;, that equates the capital labor ratio for the optimal capital and labor demand decisions,

and thus solves the above equation, is
(81) Dit = 5MCit

39



where mc;; is the marginal production cost of the producer of intermediate ¢ and equals the unit production

cost implied by the Cobb-Douglas production technology, i.e.

l—a «
1 Wi T+ + 0

82 = —
e i
and the resulting profit level equals

1-6
(83) Tt = Tmcit = (1= 0)pityut
Hence, the resulting value of the firm is given by
(84) Vit = / el Tjdjﬁisds =(1- 9)/ e i Tjdjpisyz‘sds

t t

which corresponds to (10).

Derivation of equations (11) through (15):

Combining the factor demand equations with the demand equations for each of the intermediates, we obtain
(85) wiliy = (1— ) Oyfyy % and (ry + 6) ki = abyfyy,
Integrating the factor demand equations over the set of available intermediate goods yields that
t t
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and
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In addition, we find that the relative factor demands, across intermediates, satisfy
0
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Substituting this into the production function of the intermediate goods suppliers yields
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This means that
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which yields that
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— 00
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which is the aggregate production function representation that we use.
Applying the CES price aggregator, we obtain that
6

t % N -« «@
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—oo \Dit zit |1 —a «

this implies that

(93) Dit = pz’t/pt = Zt/ait

which allows us to write the relative output levels, factor demands, and prices in terms of relative productivity

levels, as in (14).

Derivation of equations (23) and (25):
First of all, in order to see why the maximization problem (22) actually boils down to choosing xy, it is

worthwhile to rewrite the implementation cost function, i.e. (21), as

(04) gimplement (1) = (1 _ §) e () (1 - ) - ol

2t

Secondly, it is worthwhile to rewrite the expression for the value function, i.e. (20) as
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then we can write the objective that maximized in the firms implementation decision as

0
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The resulting necessary, and in this case sufficient, first order condition for the optimal choice of zy; is

lfxtt

1
(99) 0= bytys — 5%17& ( i )
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which yields that

by
(100) Gy = — It

2 "€+ yibes

which is equation (23) in the main text.

The value of the firm, net of implementation costs, is given by

1
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which is equation (25).
Derivation of equation (36):
We rewrite
o t o b e
(102) 20 ~° z/ a;t’@dvz/ [ )

o t e 0
(103) <Zt19> :/ aéieivtdv‘i‘a;iel’tt

Since
(104) Tor = A(L = ut)

we can write

_0_ t 0 t e e
(105) (Zt10> = )\/ Eﬁfedv—)\/ o P Tppdv + ;" Ty

which is (36).

Derivation of transformed equilibrium dynamics:

In terms of the 10 transformed equilibrium variables
{y:v ir’ sz kﬂ Ttty Gt baw b;ta Xf,aYt}
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we can rewrite the resource constraint, consumption Euler equation, capital accumulation equation, produc-

tion function, and capital factor demand equation as

(106) yo = o +ip + (1= 0)Ex X, [§ (= In (1 — 24t) — ut) + byl
é yr 1

1 l = —_— — —

(107) = o <a9 = ] p) o
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(108) kr 0T T

(109) yo = k°

Moreover, we can write
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Furthermore, we also derive differential equations for the coefficients b, and b},. These yield
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we can write

(116 i, = {ad% 50 x) xwe - B - a1
. ot g1,
(117) by = {aeé—5+/\Xt+XtXt$tt—y}— l—agt} ot — 1
Finally

1 *b*
(118) o= 5 [ohr — et (1 22 )
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and

b* y*

119 = o
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which completes the system of 10 equilibrium equations.

Derivation of steady state:

The steady state values have to satisfy

(120) o= T4+ (1-0XX[E(—In(1 —F) — ) + 6]
(121) o= ke
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(129) 0 = 1f@g—X

Our approach to solving this system is to derive a non-linear equation for g and show that it has a unique
solution.

We obtain that

(130) X=—"i



Because

(131) 0=Xx1-x)+1-X2)X
we can write

(132) X=-A1-%)+ 0@

This simplifies the equations
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From the Euler equation, we obtain that
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which allows us to write

~ 1
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and we will assume that 1) > 0. As sufficient condition for this to hold is that 1349 > ﬁ Furthermore, we

can also solve

A+X

139 Y = =
(139) A==

The production function equation, which, combined with the Euler equation, implies that

(140) b (%*)a_l =p+d+ (1_5(1)0

This yields that
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The capital accumulation equation implies that

~ 1 \~
(143) it = <6 + 1 g) E*
The solutions for y*, gﬁ, and E; now allow us to write the steady state optimal implementation decision as

(af) ™=

(amfi+£@+A+w@(p+5+@§ﬁg

(144) z= —a—
11—«
and the steady state R&D free entry condition, which determines the steady state growth rate of the economy,

as
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Proof of existence and uniqueness of steady state:
In order to prove existence and uniqueness of the steady state, we have to show that the above equation,
(145), has a unique positive root, g.

To see this, note that the partial derivative with respect to g of the left hand side is one. The partial
derivative of the right hand side satisfies

o) 0 o ()
(146) 0> — _ _
1) ag 1+ b:gy* ag
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- el )
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o 1 1 T b
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which is negative.
AtG=0
1[1] ap 177 1 af 7w
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(147) ¢Hp+6} ( STESVAPES:

at g — oo, the right hand side will go to zero, because 55,3;, y* — 0. As a consequence, there is a unique g
that solves the steady state equation.
We have to make sure, though, that at this g the household’s objective function is bounded. This is

always the case when ¢ < 1. However, when o > 1, then this requires that

1 1 -
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This imposes some parameter restrictions on £ and ¢. Namely, it has to hold that

af e
§+ 5597

which yields the restriction that invention can not be too cheap in order to lead to an excessive growth that.
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In particular, the R&D cost parameter has to satisfy

o
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Derivation of comparative statics results, Table 1:

For the derivation of the comparative statics, it is useful to consider the steady state R&D condition

(151) 0=¢g— [Egg* — ¢l (1 + bwg)]

The partial derivatives of the steady state growth rate can be determined by the application of the

implicit function theorem to (151). The partial of (151) with respect to § gives us

(152) 0 < AFY
(153) = o+v |- (-5
o o v
(154) *[% (1‘”%}<aafa><p+5+uiw>

The partial of (151) with respect to A equals

(155) APY — (1 -5 5% <0
Similarly, the partial of the right hand side of (151) with respect to £ equals
(156) AV = —In(1-7) -7 >0
Finally, the partial of the left hand side of (151) with respect to ¢ is

(157) ALY =3

These results imply that

dg (151)] 71 A (151)
(158) o= [Ag ] AP 5
while

d§ _ (151) -1 (151)
(159) = [Ag } ALY <0
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and

dg a5t s (151)
(160) %f—[AE } AP <o

which completes the first row of the table.

For the partials of z* it is first worthwhile to consider

= or
161 A® - 22
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~ « 1
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The most complicated derivative here is
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This expression is negative, whenever
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But it turns out that

xT

(172) E-lm(1-2)—-172] < f[(l_%)—f}:51?%5:£<b§§*>§:3;§*%

< (B-%)7+hyE=[6-0-9%]7
Thus, we obtain that

(173) oo - -2 > b [f- -8 7

> gbé[~In(1—-7) - 7]

and

e I o v
e {bo B bx} <(1 ~a)’ U) <P+ o+ <1§a>a>

« 1 ~
> <(1_a)20_> (p+6+(1§a)g>§[_ln(1_x)_~]

and, since ¢ > 0, inequality (171) holds. Thus

(175) % <0

Derivation of equations (54) and (55):

The market share satisfies

aig \ 77 aig \ 77 (a7
176 = —= S s huc)
» () () ()
Such that in steady state
(177) Sii = TXX

Moreover, on the balanced growth path

%
(178) Tip = <a”> — Kl _ e—k(t—i)) n e—A(t—i)ﬂ
a;
while
ai % _L“'(t_i)
(179) — = e 109
a

Combining these two results, we find that, on the balanced growth path,

0 for ¢t <1

(180) Sit = 4 , o
[(1 — e_’\(t_l)) + e_’\(t_l)if] e~ 990703 otherwise
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Taking the partial of this expression with respect to ¢ for t > i, we obtain that

0

(181) s = A M1 -T) XX — ﬁgsit

i 0
=‘MW)—P+194%

The learning effect dominates at the introduction of the intermediate good whenever

0 -

this is the case whenever the implementation cost is so large that

88#

(182) 0< —

A

183 rT< —F—
(159) A+ 1555

Under this condition, the path of the market share is initially increasing and subsequently decreasing.

Derivation of equation (57) :

We obtain that

69 99 99 ! 99

1— 1— 1— 1—

(184) Sit = 2, z; %, where 2,7 = [ a; " do
(2

6
For z;t"’ we obtain that it satisfies

0 b o L o
(185) zi "’ :/ af{"da:/ a, " xdu

such that

_0 0
(186) (z;t‘g ) af 0 Fdi+a " Ty

t =2 0
= )\/ edl, )\/ a " xd+a)  wy
i i

_6

= /\/ a "’ edL )\z " ta
i

Which simplifies on the balanced growth path to

N e, T 1.8 1-0
(187) (Z,the> :El*ee%g(tﬂ) |:)\ eg + :| — Awﬁj 9 — )\Z,th 1-9

o
and can be combined with the initial condition that zili’e =0.

The particular solution to this differential equation yields that

1% ! — —s 71% 0 _F(t—i 1_6 971
(188) 2 = [6 At ‘)[ai 7 gl ){A - ]_A s e:|ds

ot ~ 1-0
_ atpe / e—/\(t—s) |:e1999(755) |:)\0~ _|_j:|
i g
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such that

ase) 2T { Mg 0
189 o =ar

]

On the balanced growth path

(190 e L S
A+ 1559
Hence,
L\ TF
(191) se = (%)
_ [1 _ e—[x+%§]<t—i>} _ e~ 900 {1 _ e—A(t—i)}

which is equation (57).

Approximate transitional dynamics:

The approximate transitional dynamics of this economy can be derived by log-linearizing the 10 dynamic
equilibrium equations. Throughout our derivation, we will denote percentage differences from the steady
state by “. That is, gy is the percentage deviation of detrended output, y;, from its steady state value, y*.

The dynamics can be approximated by log-linearizing the equations

(192) Yy = ¢ +if+ (1 - 9) XXt [5 (_ In (1 - xtt) - Itt) + ¢9t]
(193) y = k“
b* y*
194 Ty = —t
1o S 5T
(195) @ = [bmyt —¢In (1 + g”t)}

and for the dynamic jump variables

& yi 1
196 £ = 0t _5—p) —
(190 5= (o -omr)-iom

n Yi - Yt 1 "
(197) boe = {Oﬂk% =0 = A1 = x¢) + X Xete — y%k - l_agt}bot_l
(198) by = {aak‘% =0+ AXy + XXy Tee — y*;; T 1C agt} br —1
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while the state variables evolve according to

(199)

(200)

(201)

Which yields
(202)

as well as

(203)

also

(204)

as well as
(205)

such that

(206)
and

(207)

also

(208)

k it 1
S T
kr kr 1-a”
Xe _
= = A= xg) + (1= X)X
Xt
%o_ 9 9 —X
Xt 1-67" !
yp = ok

~k E*A*+;A*+

y = f*C f*l

t 0] t 0 t

XX o~ ~
(1-0) = [§(=In(1-2)—7) + dg] X; +

XX~ T

SRS

(=0 (-1 =3) =)+ g%, + (1 - 06T

y*

+(1-0) ¢>’Z§—§§gt

Fu=01-D)b+(1-D)7;

y el et
= aaﬂ%—*ﬂz‘ - aaG%—*kf -

Bo = abZ G —abZF + (A+FX) X, + IO, + T
N 1 1~

—akf — ——Ggs + = b}

QR 1—Ofggt+b(’§ 0t

b= a0~ af ]+ (A FX) R+ IO + I
A-* 1 ~a 1 T

—ak; — 1_g%9 + 'bf*bm

x
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It also yields that

~, e i, 1 .
(209) ki = ?Zt - ?kt 1 a9
and
(210) Re = = (A+3%) W + (1 - 30 XX — #¥xu
and, finally
(211) s -9 s
Xt = 1— gggt XXt

which are the 10 log-linearized equilibrium equations.

Calibration:
We choose o, p, and § similar to Cooley and Prescott (1995).

The demand elasticity parameter, 6, and the capital elasticity of output, «, are pinned down by the
observations that labor costs in the U.S. make up 60% corporate income (value added) if intangible capital
is taken into account and that that 15% of value added is paid to intangible capital. The theoretical

counterparts of these conditions are
(212) (1—a)#=0.60and (1—6)=0.15

which yields that § = 0.85 and a = 0.29.
This leaves A, ¢, and £ to be calibrated. We do so by using the following three moment conditions. First
of all, we choose our parameters to be consistent with the 2.1% average post-war growth rate of U.S. real

GDP per capita. The theoretical equivalent of this observation is that

(213) % = 0.021, which yields § = 0.016
—

Secondly, we choose our parameter to match that R&D expenditures make up 2.5% of GDP. In terms of our

model, this implies that

(214) (1-0) ;&% = 0.025
Finally, we choose our parameters to be consistent with evidence on learning by doing in the U.S. manufac-
turing sector from Bahk and Gort (1993).

Bahk and Gort (1993) provide evidence on how the level of output (shipments as well as value added) at
the plant level, y;;, depends on labor inputs measured by employees, [;;, and by wages, w;;, capital inputs,
k¢, a trend, ¢, as well as of the plant’s cumulative output level, X;; = ftt_age“ yirdt’. The latter dependence

is meant to measure learning by doing effects.
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For a sample of 1281 plants for the period 1973-1986, they find the relationship'?

(215) Inys = 1.55+40.6121nl; + 0.690 In w;; + 0.2821n kyy

+0.020¢ + 0.028 In X;; + ez

the average age of the plants in the sample is between 6 and 7 years old. We interpret this to mean that for
these plants a one percent increase in cumulative output seems to lead to a 0.028 percent increase in total
factor productivity.

We calibrate our model such that we find a learning by doing effect of a similar magnitude in our model.
Bahk and Gort (1993) claim that most of their identification comes from the cross-sectional dimension of

their dataset. In line with this claim, we consider the estimation of a cross-sectional regression of the form
(216) Inay =Bo+ P, InXit + e

for all firms ¢ € [t — 13,¢ — 1]. We then choose our parameters such that the ordinary least squares estimate
of B, equals 0.028.
This calibration method requires us to derive the OLS estimate of 3,. The first step in this derivation

is to consider that, in the steady state,

(217) Ina; =Ina, —g(t—1i)+

In [1 - (1-2) ef)‘(tfi)]

Moreover, the level of output of intermediate ¢ at time ¢ is given by

l ~ . ~
(218) Yit = [1 -(1-2) e_/\(t_i)} ' e_(ﬁ_m)g(t_z);@yi
Such that
~ ¢ I é 1 1 ~( 4/ -
(219) Xit = )?Yyi/ [1 —(1-2) e ”)] e (Ta—25)a(t' 1) g/

_ t 1
= e [ 1o (- me )] (e
i

When we define the sample means

Ina;;di and In X = —/ In X;:di
t—13

1 t—1
B 12 t—13

(220) Ina

then the OLS estimate of 3, equals
-1

(221) 3, - ( / . —lnX)de) ( / " (10 Xy — %) (nag - na) dz‘)

—13 —-13

and thus Bz = 0.028 is our last moment condition that we use to calibrate our parameters.

12Bahk and Gort (1993), Table 1, row (7).
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Neoclassical model we use for transitional dynamics comparison:
In the Neoclassical model that we use for comparison growth is exogenous and equal to g. Implementation
is free such that # = Y = 1 and \ = %ﬁ. Profits made are paid back to households.

The stationary equilibrium dynamics of the resulting model are given by the Euler equation

222 hut A gt _§5— -
222 oo (ef o)
the resource constraint
(223) yr =cf +1i;
the production function
(224) yr = ki®
as well as the capital accumulation equation

kr i 1
225 Be_ s L -
(225) kr K 1—a?
The planner’s problem:
The social planner in this economy would choose a path for
(226) {657ymimks,$:s’gs,zs>557zs}it

to maximize the present discounted value of the representative household’s stream of utility that equals

0 o—1
(227) / e 7 7 ds
t

subject to the resource constraint that

(228) w=crbie k(=007 (%) 7 el ()~ ai] + oa)
the final goods production function

(229) yr = zky

the capital accumulation constraint

(230) ky =iy — Ok,

the law of motion of potential productivity of the newest intermediate

% 0 &
(231) e



the law of motion of average potential productivity

AT
(232) (zt ) =a

and the law of motion of average productivity

= W (R A N,
(233) z =Xz 2 +a, "x},

This means that we can write the dynamic Lagrangian associated with this problem as
(234) / e P Hods
t

Where the current value Hamiltonian, H;, is given by

o o—1
(33) H = T

0 \I-a 0 -1 0
F by |Ye — €0 — i — (1= 0) <Zt1_6) a; " [E(—In(1 —zy) — zp) + dge)
1-9
6 3
Thy | Yt — (Zt10> k'
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This yields the following first order necessary conditions for an interior solution
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The planner’s stationary transformed allocation dynamics:
We will write the above system in a set of transformed variables that are stationary along the resource
allocation path chosen by the social planner. These transformed variables are detrended consumption,

output, capital, and investment

ct Yt ky . it

* * * *

(236) G =—,4y =—7, ki =—,and i = —
Ztl—(y Ztl—(x Ztl—n Ztl—a

as well as the potential productivity gap and implementation gap
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]
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237 (™ dv. —
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The implementation level, x4, and the growth rate, g;. As well as three transformed costate variables.
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where it is worth noting that
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This allows us to write the system of equations as
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and the transformed optimality conditions
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The transformed Euler equation
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Furthermore, we can write
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* _ 1 6 : :
However, because pr, = S0 this can be written as
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Further transformation of this equation yields
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which we can simplify to
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The planner’s steady state:

The planner’s equilibrium variables are

(261) {yfvc:ai:axttagtak:v“’;fmﬂ;tv)(tv?t}

which in steady state have to satisfy
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as well as

1 &
(268) 0 = a(a%*—é—p>—11a§
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The solution of this steady state is the following. From the Euler equation we obtain that it must be the
case that the steady state level of capital satisfies

~ o1 J
(272) a(k) =it .

which yields that the steady state level of capital is

1

(273) et =

o ‘| T—a
g
p+0+ )

From the production function, we now know that the steady state level of output must equal

a ]15“ (1>1aa
p+I+ s b

Because 6 < 1 one can see from this that, even if the growth rates in the decentralized and planner’s allocation

(274) v =

af ] e
g
p+ o+ (1-a)o

would be the same, the markup distortion would result in less output in the decentralized equilibrium.
As a function of the growth rate and implementation level the potential productivity gap and the

implementation gap in steady state again equal
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A+ xX

Also
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What is different is the optimality conditions that determine the growth rate and the implementation

decisions. Remember that in the decentralized equilibrium, it was the case that in steady state

y" _ T
(279) E(p+A+vg 1-13

In the planner’s steady state

1 z
(280) ERE.
and
(281) ;* — %[(1_0)(%_ﬁ)iﬂf(—lnfl—f)_g)+¢m+§*
e (0 +A+99)
(252) - L (}) (1-60) (%5 — 25 Wl (1-3) =5) + o) + 7
(p+X+1g) \ 0 =

Moreover, we can write
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Thus, the planner’s steady state growth rate and implementation levels satisfy the following two conditions
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The decentralized equilibrium with subsidies on R&D, implementation, and capital inputs:
The three optimality conditions in the decentralized equilibrium that are distorted by the three subsidies
are the ones associated with capital demand of the firms, the innovation decision, and the implementation
choice.

Given the subsidy on capital inputs, the firm’s flow profits equal
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(286) Tit = Pit¥it — Welip — (1 — sx) (e + 6) kit
and the firm chooses its capital inputs to equate the after tax rental rate of capital to the marginal revenue
of capital. The optimal capital demand condition under this subsidy is

Yit

(287) (1—sg)(re+0) = aﬂk‘t

The price is still set at a constant markup over marginal costs

1
(288) pit = gmei

However, marginal costs are now measured including the capital input subsidy, s;. That is,

1 [ w }1“[(1—3,@)(””) “

289 it = —
(289) e a |1 —« o

This again allows us to write the aggregate production function (11), where the aggregate capital input now
satisfies
(290) (1— sg) (re +6) = a2t
kit

what this subsidy does is to lower the rental rate of capital in equilibrium to correct for the underusage of cap-
ital in the decentralized equilibrium that is the result of the monopolistic competition between intermediate
goods suppliers.

The implementation subsidy reduces the after tax cost of implementation from £ to (1 —s.)¢. As a

result, the optimal implementation level is now determined by

- Ttt
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1_$tt

The resulting value of the firm is given by
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Similarly, the R&D subsidy reduces the after tax cost of doing R&D from ¢ to (1 — s4) ¢. The resulting

optimal innovation decision is

(299) (-spa-006(2) T =ve



which yields that

(L —54) & [(bot + bax Tt
(294) gt = (1—sg)$ [( bor > T +1In (1 — )

In terms of the transformed variables that are constant along the balanced growth path, we can now rewrite

the dynamics as

(295) yi = ¢ +ip + (1= 0)Xx, [§ (= In (1 — z4) — 20t) + bgi

where the lump-sum taxation that balances the government’s budget makes this resource constraint hold.
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The resulting steady state conditions of the decentralized equilibrium with the distortionary subsidies are
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as well as
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and then there are the optimal implementation and innovation conditions
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In order to consider which combination of subsidies supports the planner’s solution in the decentralized

equilibrium, realize that the planner’s solution satisfies

@
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1—a
e
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Hence, conditional on the other subsidies supporting the planner’s growth rate, the optimal capital input

subsidy is such that
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Hence, the capital input subsidy is such that s, =1 — 6.
Next, note that the planner’s optimal implementation condition is
0 1\ XX
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(322)
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Thus, to support the optimal implementation level, conditional on supporting y** and ¢g*?, the implemen-
tation subsidy has to satisfy
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Finally, we consider the optimal R&D subsidy in this economy. The planner’s optimal innovation con-

dition is
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Hence, to support the planner’s growth rate and implementation level in the decentralized equilibrium, the

R&D subsidy has to satisfy
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A version of the model without implementation:
Decentralized equilibrium with subsidies:
If there is no implementation cost, the value of the firm equals
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The firm’s optimal capital demand condition is affected by the capital subsidy and equals

(330) (1 - sp) (re +0) = a@%

The resulting R&D free entry condition equals
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Since there is full implementation in this case, there is implementation gap and thus
(333) e =1

The resulting system of equilibrium equations is
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which, in terms of the transformed variables, yields

(343) yi = o +ig+ (1 —-0)X09
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The resulting steady state is of the form
(30) e AR

The steady state potential productivity gap again equals
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The steady state present discounted value coefficient is

~ 1
352 by = ——
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The capital stock in steady state satisfies
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such that the steady state level of output equals
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The resulting steady state free entry condition into R&D yields
- 1 v

355 g= =

(35 T s)60+ 45

In order to see which subsidy scheme actually supports the planner’s allocation, we have to solve for it.

Planner’s problem:
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The current value Hamiltonian associated with the planner’s problem without implementation is
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which yields the first order necessary conditions
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This system can be rewritten in the transformed variables
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as well as the transformed costate variables
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The transformed system reads
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and the optimality condition
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Subsidies to support planner’s steady state:
Just like in the case with implementation, the optimal capital input subsidy is the one which offsets the

distortion due to monopolistic competition. This is s = 1—0. The optimal R&D subsidy solves the following
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combination of the planner’s optimal innovation condition and the decentralized free entry condition into

R&D.

(381) l1_<129_1ia>139(03¢§>2

Solving this yields that the R&D subsidy that support’s the planner’s steady state allocation satisfies
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(p+49) =1

(1-s9)g

Welfare analysis:
The representative household’s welfare in the steady state for a given level of consumption, ¢*, and growth

rate, g, is given by
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which yields
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