Technical Appendix
International Capital Flows

Cedric Tille and Eric van Wincoop

This Technical Appendix describes all technical details associated with
the paper. It is organized in six sections:

1.

1

First-order solution conditional on k(0), which is the zero-order portfo-
lio share invested in domestic assets in each country (so that k”(0) =
2k(0) — 1).

Second-order solution conditional on k(1)

. First and second order components of Bellman equation

Second and third order components of optimal portfolio equations

. Overall solution method

Balance of payments accounting

First-order solution conditional on £(0)

While the paper describes a general numerical solution, the model is simple
enough to allow for an analytical solution of the first-order components of
control and state variables conditional on k(0). We first describe the an-
alytical solution and then turn to the numerical solution. The latter has
the advantage that it is also applicable to more general structures than the
specific model of the paper.



1.1 Analytical solution

The first-order component of the model equations can be computed by log-
linearizing around the zero-order (steady state) component of model vari-

ables. The latter are W (0) = 1/¢, R(0) = (1—¢0)/(1—v), Q(0) = (1—v) /v
and A(0) = Pr(0) = 1. The zero-order components of the logs of model vari-
ables are simply the logs of these values. Linearizing around these values
delivers the following first-order components of model equations (46)-(54) in
Appendix A (all equations other than the Bellman equations that will be
discussed separately in section 3 below):

ap+1(1) = pap(1) + gt (1)

api11(1) = papy(1) + €pigr (2)

Wii1(1) + peia (1) = (1 = 90) [k(0)rma41(1) + (1 — £(0))rrea (1)) (3)
+0ari1(1) + (1 — 90) (we(1) + pe(1))

Wi (1) +pia (1) = (1= 0) [(1 = k(0)) rare1(1) + k(0)rpesa (1))
+00 (ape+1(1) + pre+1(1) + (1 = 90) (wi (1) + p;(1)) (4)

apy(1) = aw(1) + (1 — @) wi (1) + Mapi(1) + (1 — a)p; (1)) (5)

qr (1) = k(0)(w(1) + pe(1)) + (1 = £(0)) (wy (1) + p;(1))

+2k2(1) (6)
qri(1) = (1 = k(0))(we(1) + pe(1)) + k(0) (wy (1) + p; (1))

—2k(1) (7)
Ey(rgia(1) = rrea(1)) =0 (8)

The last equation follows from the first-order component of both Home and
Foreign portfolio Euler equations. For the asset market clearing conditions
(6)-(7) we have used that kff,(1) = k(1) 4+ 0.5kP (1), ki, (1) = k(1) —
0.5k (1), kf,(1) = 1 — kff,(1) and kf, (1) = 1 — kf,(1).

The first order components of consumer price indices and asset returns



in equations (57)-(60) of Appendix A are:

pi(1) = (1 — ) pre(1) 9)
pi(1) = apra(D) (10)
() = e () + 5D —am) (D
rren (D) = 2 )+ LT () 4 pren(1) — g (1)

1— 40 1— 0

(12)

Notice that only the first-order component of the average portfolio share
k(1) enters these equations, not the first-order component of the difference
in portfolio shareas, k(1). In addition, the first-order component of the av-
erage portfolio share enters only through the asset market clearing equations.

It is useful to write variables in terms of averages and differences across
countries, with the superscript A standing for average and superscript D
standing for the difference between countries. We take differences and av-
erages of the sets of equations (1)-(2), (3)—(4), (6)—(7). For (5) substitute
an(l) = aj i'(1) + 0.5a (1), ar,(1) = a; (1) = 0.5a (1), wi(1) = wi(1) +
0.5wP (1) and w;(1) = w(1) — 0.5wP(1). Also using (9)-(10), (1)-(8) then
becomes

atAH(l) = paf(l) + 524+1 (
a1 (1) = pa (1) + €1, (14)
wit (1) 4 0.5ppe1(1) = (1= 90) 1 (1) + ¥0(aiy, (1) + 0.5pp11(1))

(

¥ (wi(1) +0.5pr (1)) 15)
w, (1) + (1 = 20)pre (1) = ( )( k(0) — Driq (1) +

00 (af, (1) — prasa (1)) + 0) (w (1) + (1 — 2a)pre(1))  (16)
a*(1) +0.5a” (1) = wi*(1) + 0. 5 (2a —DwP) +

20 (1 — ) pre(1) (17)
gi' (1) = w;(1) + 0.5pr (1) (18)
gr’ (1) = (2k(0) — Dwy (1) + (1 = 2a)(2k(0) — Dpr,(1) + 4k (1) (19)
Eyr{,(1) =0 (20)



Taking the average and difference of the asset returns (11)-(9), we have

i) = 1t (0 + S [0 (1) 4 05prra ()]
—q/'(1) (21)
2a(1) = )+ S @B ) = (1)
—q¢/(1) (22)
Combining (15), (18) and (21) yields
wi (1) = af (1) (23)
0(1) = (1) + 5pra(1) (24
(1) = (@) = () + 5 roa() —pre@)  (25)
Using (23), it is immediate from (17) that
i) = T = ) - T (1) = paaf (1) (1) (20

For now we make the conjecture that the equity price differential is given by
qP (1) = q,aP (1) + quwP (1). This will be verified below, with coefficients ¢,
and ¢, to be determined. The excess return (22) then implies

1—
Pal1) = T [l (1) + el (1]
1-46
D (1= s (1) = PRl (1) - (1) - guf (1)
= myap (1) + meaP (1) + maw 1 (1) + maw; (1) (27)
where:
11— 1—-6
ma 1_ J}ZJQQCL + 77Z}1<_ we) (1 _pa) Mo = —(qq
1w w09 .
3 — 1_wHQw 1_¢€ Pw my = —Qqu
Substituting (27) into (16) we have
th+1(1) = maﬁl(l) + 50, (1) + nzw,” (1) (28)

4



where:

. :( 1) [(1 - mﬁwﬂ—@ﬂ—mWHm—Um+Wﬂ—m)
' - (2k-1)[C — 9 (1= 0) pu] — (20 = 1) pu + $0pu,
A (1- 1/;9) [(2k—1) + (200 — 1) p, ]
’ 1— (2k = 1) [(1 = ¢) g — ¢ (1 = 0) pu] — (20 = 1) puy + ¢0ps,

(1—90) [1— (2k — 1) qu — (20 — 1) pu]
— 2k = 1) [(1 =) qu— ¢ (1 = 0) pu] — (200 — 1) pyy + VOpy,

Substituting (28) into (27), the zero expected excess return equation (20)
leads to two restrictions on the parameters:

Ny =

0 = (pma+ma)+ms(pn, + 1) (29)
0 = mans + My (30)

(30) does not depend on ¢, and can be used to solve for for g,:

1—(2a—1)py,
1= (20 = 1) pw + Opu, (1=

Guw = —

Having solved for g, (29) is used to solve for ¢,:

_ (1-0) pY

Qo =
1—(2a—1)py+60p, (1 —90) —p(1—1)
(1-9)

1_ (2@ — 1)pw T epwpa (20[ - 1)pw

¢, and ¢q,, are then used to solve for my, ms, ms, my and 7, 7, and 7.

The zero-order component of the portfolio share, k(0), does not affect the
parameters Pg, Puw, a, Guw OF M1, Mo, M3, my. It therefore does not affect the
solution of relative prices of goods and assets. k(0) does impact the first-
order solution of the model in two ways though. First, it affects the solution
of the average portfolio share k;(1), which follows from (19):

(1 =pa) = 200 = 1) pu]

+

k(1) = kaa (1) + kyw (1) (31)
where:
- a%+@MM—DQa—Dm]
bo = 7l — (2K0) = D1 - (20— 1)p,]
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Second, it affects the accumulations of wealth. Substituting (13) into (28)
we have

wl1 (1) = nyely + (pny + my) aP (1) + nzw?P (1) (32)

where

pl2a—1)+60¢ [ Ma(l—a)—1]] — (1 —¢8) (2a—1)

I+ AN=1)4da(l —a) =9 (2a—1)
I1+(A—14da(l—a)

I1+(A—1)4a (1 —a) —¢f(2a —1)

Pty =

ns = (1—10)

While pn; + 1, and 15 do not depend on k(0), ; does depend on k(0). The
impact of the innovation €, on wf, (1) therefore depends on £(0).

Overall we can summarize the first-order solution of all variables other
than kP (1) as follows. The solution for the control variables is

pri(1) = paay (1) + puwy (1) (33)
¢ (1) = qaa; (1) + guwy (1) (34)
(1) = a (1) + 0.5paaP (1) + 0.5p,w? (1) (35)
wi(1) = af'(1) (36)
kit = koaP (1) + k,wP(1) (37)
The accumulation of the state variables is described by
aﬁu(l) = paf‘(l) + Eﬁu (38)
agiy(1) = pag’ (1) + e (39)
wi (1) = mely + (o1 +m2) af’ (1) + nzw/ (1) (40)

1.2 Numerical solution

The solution method described here is the standard first-order solution method
that applies more broadly than to the particulars of the model in the paper.
The system (1)-(8) consists of 3 state variables and 5 control variables. The
vectors of state and control variables are

Si=1[a’ wP af ]/ (41)
CVi = [ th PFy /ffl dat qri ]/ (42)



We write the entire vector of model variables as

%= | vy | (43)

After substituting the expressions for consumer price indices and asset
returns, and applying the expectations operator, equations (57)-(60) of Ap-
pendix A can be written compactly as

Eg(Xy, Xi41) =0 (44)

The first-order component of model equations follows from a linear expansion
around the steady state, which delivers

M]_Xt(l) + MQEtXt+]_<1) — O = EtXt+l<1) — MXt(l)

where M = — (M)~ M;.
We diagonalize the matrix M

M' = EVQEV™!

where EV contains the eigenvectors of M’ and () is a diagonal matrix with
the corresponding eigenvalues. Using the property that (EV 1) = (EV’)~!
it follows that

M = (EV') 'QEV’
We define

X,(1) = EV'X,(1)

so that the first-order component of the model becomes
EtXt+1(1) == QXt(].)

The system is well defined when there are as many zero and explosive
eigenvalues as there are control variables (that is 5). We set the corre-
sponding elements of X;(1) to zero. Let EV'(subs) denote the rows of EV’
corresponding to the zero or explosive eigenvalues. The first-order compo-
nent of control variables as a function of state variables is then solved from
EV'(subs)X(1) = 0, which gives

CV,(1) = —(EV'(sub,4 : 8)) 'EV'(sub,1:3)S,(1) = EV - S,(1)  (45)



In particular, we will use the following notation for the solution of goods
and asset prices

pri(l) = psSi(1) (46)
are(l) = QE Si(1) (47)
are(1) = ¢ Si(1) (48)

The accumulation of the first-order component of the state variables can
be described as

St+1(1) = N15t<1)+N26t+1 (49)
[l ]

€141 €1 €41

This can be derived as follows. Let B; be a 3x8 matrix that extracts the
rows of the model equations corresponding to the accumulation of the state
variables: the dynamics of the home wealth (3) and the dynamics of both
productivity levels, (1)-(2). Without the expectation operator applied to
those equations we have

By M X (1) + BiyM2X41(1) = Bsérya (50)

where:

™
w
I
O = O
_ o O

Using (45) we write:

X,(1) = [5‘22) 1 _ {E{V S,(1) = BySy(1) (51)

where [ is a 3x3 matrix. Proceeding similarly for X;,(1), we rewrite (50)

as:
BiM,BySi(1) + B1M3B5S;41(1) = Bseryq

which leads to (49) with

Ny = — [BiMyB,) ™ Bi M, B, N, = [B,MB;] ™" By



2 Second order solution conditional on k(1)

2.1 Second-order component of model equations

We now describe the numerical solution of the second-order component of
model variables conditional on the first-order component of the portfolio
difference, kP(1). Applying equation (6) of the paper, the second order
component of the model E;g(Xy, Xi11) = 0 is equal to

MiXy(2) + MoEy X1 (2) + E,Oy = 0 (52)

where FE;Oy contains the product of first-order components of model vari-
ables. These multiply second-order derivatives of the model equations at
the steady state. Let E;O5(i) be the i’th element of F;Os, corresponding to
equation i of the model. We have

L1 1
Et02<2) = §Xt(1),M3,th(1) + §EtXt+1(1),M4,iXt+l(1) +
X, (1) My, B Xy (1) (53)

where Ms; is the second-order derivative of equation 7 with respect to X;
and My ;, Ms, are similarly defined.

While k(1) does not enter the first-order components of model equations,
it does enter the second-order component through E;O,. We solve the second-
order component of model variables conditional on a conjectured solution
for kP (1), which is kP(1) = kSi(1). The Ms;, My,; and Ms; matrices
then depend on k,. Rather than numerically recomputing these second-order
derivatives for each value of k; we proceed as follows. Portfolio shares enter
the second-order component of model equations through

ki, (1) = k(1) + 0.5k (1)
ki (1) = k(1) — 0.5k (1)

and kif,(1) = 1 — kj7,(1), kf,(1) = 1 — kf7,(1). We first numerically com-
pute the second-order derivatives at ks = 0. We then make an analytical
adjustment that adds terms to the second-order derivatives depending on k.
Specifically, portfolio shares enter through wealth accumulation and asset-
market clearing conditions. Using these equations ((48)-(49) and (51)-(52)

EA(1) 4 0.5k,5,(1) (54)
EA(1) — 0.5k,S,(1) (55)



in Appendix A of the paper), and focusing on the second-order components
that depend on k,, we have

> + other

_ 1-yf Tq (qmer1(1) = qrer1(1) — (qme(1) — qre(1))
wi1(2) = 5 kS (1) ( E +(1— q) (aP (1) — %FtJrl(l))q ) + other
N 1 —40 g (qre+1(1) = qre+1(1)) — (qae(1) — qre(1))
we1(2)" = — 5 ksSi(1) < 1 +(1- TZ) (aﬂl(l) _%F,tJrl(l))q
qui(2) = _%ksst(]-) [(2a — 1) pry(1) — w(1)] + other

qr:(2) = %/%St(l) [(2a = 1) ppy(1) — w(1)] + other

where “other” stands for all the other second-order terms that do not depend
on ks and r, = (1 —¢)/(1 — ). Starting from the second-order derivatives
of the model equations at ks = 0, these equations allow us to analytically
adjust the second-order derivatives Ms;, M,,; and Ms; as a function of k.
Substituting the solution of the first-order components of model variables,
described by (51) and (49), into the expression for F;O,(i), we have

E,0a(i) = %5,5(1)'35M3,2.325t(1) + %st<1)'N;B;M4,iBQlet(1)
+%Ete;+1N§B§M4,iBQN26t+1 4 S,(1) ByMs. BNy Si(1)
This is written in a more compact way as:
E,05(i) = Sy(1) K; S (1) + 0k
where:
K, = %BéMgﬂ;BQ + %N{B;MMBQNl + By M ; By Ny
k; = trace <%N§B§M4JB2N2>

This uses that var(e;1) = o9l, where I is a 2 by 2 matrix.
It will be useful to write the quadratic terms in S;(1) as a vector. Writing
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element i of S;(1) as S;;(1), define

Sea(1)?
Si1(1)Si2(1)
St (1)Sea(1)
St2(1)Sea (1)
i(2)=| Sip(1)?
St2(1)S3(1)
St3(1)Sea (1)
Si3(1)S2(1)

Sa(1)?

E;O4(i) can then be written as a linear function of Y:
EOy(i) = (K°)'Y; (2) 4 0%k (56)

where:

Kiia
Ko
Kii3
Ko
K= | K22
Kia3
K31
K32
Kizs |

where K, , is element (x,y) of matrix K;, and vec denotes the vectorization
of a matrix. (52) can then be written in a matrix form as:

M X, (2) + MyE X 1(2) + KY, (2) + ko =0 (57)
where:
(Ki=) ky
K= . k=1 ...
(K=Y ks

To compute the dynamics of Y; (2), start by writing

EYi1(2) = (EiSia(1) S (1))™

11



From (49) we write:
E;Si11(1)Si1 (1) = N1Si(1)S:(1)' Ny + 0N, N,
Write N, as:

!
n

Ny =
s
where n} is row ¢ of the matrix N;. Then element (7, j) of N;1S:(1)S:(1)' Ny
is equal to

n;St(l)St(l)'n] = [(nin;)vec}/Yt (2) = Z@th (2)
We then have

2171}/,5 (2) .. 2’173Yt (2)
EtSt+1(1)St+1(1)/ = + O'2N2Né

231Y; (2) .. 233Yi(2)
Also define
= (NN
which implies:
(EeSpr1(1)Sia (1)) = Z2Y, (2) + 0*n (58)

where

21,1

21,3
221

223
23,1

23,3

2.2 Second-order solution for the control variables

The preceding analysis allows us to write the second-order component of
model equations as

0 = MX,(2)+ MyE; X;11(2) + KY; (2) + ko?
EYi1(2) = ZY;(2) +0°h

12



In order to compute the second-order component of control variables we pro-
ceed as we did with the first-order solution. Define M = —M, 'M; and
diagonalize M': M' = EVQEV 1. This implies: M = (EV')"'QEV’. De-
fine X; (2) = EV’'X, (2). Then the system becomes

EtXt+1 (2) = QXt(Q) + QY;‘ + ]_€O'2
EY, 1 (2) = ZY,(2) +o*n

where k = —EV'M; 'k and Q = —EV'M, 'K.
Define the matrix G such that: GZ — QG = Q). Specifically, we write

/

91
G=1 ...
98
where g/ is row ¢ of the matrix G. Let ¢} be row i of matrix ). Then the row
1 of GZ — QG = () becomes

97 — Nigh = ¢

where )\; is the i’th eigenvalue on the diagonal of the matrix 2. It follows
that
Z'gi—Ngi=q =g = (Z' = NI g

where [ is a 9x9 identity matrix.
The two equations of the system are then combined as:

E/(Xi11(2) = GYii1 (2)) = QXi(2) — GY; (2)) + ko

where k = k — Gii. We again identify the eigenvalues in €2 that are zero or
explosive (as in the first order solution), and set the corresponding rows of
X(2)—GY;—ko” to zero, where k = (I—Q)~'k. This gives EV’(subs)X;(2)—

G(sub, .)Y; (2) —k(sub)o? = 0, so that the second order solution of the control
variables is

CVy(2) = —(EV'(sub,4:8)) 'EV'(sub,1:3)S,(2)
+(EV'(sub,4 : 8))"'G(sub, .)Y; (2) + (EV'(sub, 4 : 8)) 'k(sub)o?
= EVS,(2) + GY; (2) + k.o? (59)
We write R
. g1
G=1 ...
98

13



where §; is row i of G. Therefore for control variable i the part of the second-
order solution that depends on the product of first-order component of state
variables is ¢;Y; (2). We can convert this back to matrix form: §;¥; (2) =
Si(1)'gi™S(1), where the first three elements of §; make up the first row of
97", the second three elements make up the second row and the last three
elements make up the last row. We continue to use the superscript m below
to convert vectors to matrices in this way:.
For goods and equity prices we will write this second-order solution as

pri(2) = psSi(2) + Si(1) pssSi(1) + kpo? (60)
QH,t(2) = qg5t<2) + St(l)'QiSt(l) + kaZ (61)
are(2) = ql'Si(2) + Si(1)'qLSi(1) + kL o? (62)

Note that pss, ¢fI and ¢, need not be symmetric. It is ok if the 7, j and j,i
elements differ, as all that matters is their sum.

2.3 Second-order dynamics of the state variables

We now turn to the dynamic process of the second-order components of the
state variables. Let again B; be a matrix that extracts the rows correspond-
ing to the state variable accumulation equations. Without the expectation
operator applied to accumulation equations for the state variables, we have

BiMyX,(2) + BiMyX41(2) + B0y = 0 (63)

Using (59) we write:

D os2) ] Si(2)
Xi(2) = l CVi(2) ] - l EVS(2) + GY; (2) + keo? 1
= BySi(2) + GY; (2) + kyo? (64)

where:
| I3a3 =~ | Osz9 | O34
(5] elr] el
Substituting (64) into (63) we have
Si11(2) = N1Si(2) + ByY; (2) + BsYi11 (2) + BsB10s + Ngo? (65)

14



where

By — (B M,B,) " B MG

B; = —(BiMyBy)"" BiM,G

Bs = —(BiMyBy)™"

Ne = — (BlMQB2)_1 By (M + Ms)k,

First consider the term BgB;O, in (65). Element i of O,

. 1 1
02(1) - §Xt(1)/M3ﬂXt(1) + §Xt+1<1)/M47iXt+1<].) + Xt(l)/M57iXt+1(]_) -

= Si(1)'ViSi(1) + €4y Vai€rn + Si(1) Vs €041
where

1
Vi = B (ByMs; By + NyBy M, ;BoNy) + ByM;s ;Bo Ny

1
Vo = §N§B§M4,iBQN2

Vs = ByMs ;Bo Ny + NyBy My ; Ba Ny

Here we used X;(1) = ByS;(1) and Sy 1(1) = N1Si(1) + Na€yis.
Let the three rows of the model corresponding to the state accumulation
equations (the rows extracted by Bj) be rows a, b and c:

St(1)'Vi,05:(1) + €111 V2,0€t41 + Si(1)'Va g€41
B10y = | Si(1)'VipSi(1) + €y Vaperia + Si(1) Vapera
Sp(1)'V1,.Sp(1) + €11 Vo,c€t41 + St(1)' Vs €41

We can then write

St(l)/‘ZvlJSt(l) + €;+1‘?1,2€t+1 -+ St(l),@,3€t+1
BeB10y = | Si(1)'Va1Si(1) + €01 Vaperin + S:(1) Vazera
Si(1)'V318,(1) + €1 Vaperrr + (1) Vazern

where
Vii = Bgi1Vie+ Bei2Vip + Bs,izVie
Vie = DBs,i1Vaa+ Bsi2Vap + BeisVae
i3 = DBgi1Vsa+ Bgi2Vap + BeisVae

15



where Bg .., is the element (z,y) of matrix Bg.
We now turn to the term B;Y;.; (2) in (65):

B5Y;,+1 (2) = B5 (St—i-l(]-)st-l-l(l)/)vec
Using (49) we have:

St+1(1)St+1(1)’ == N15t<1)5’t<1),N{ + N2€t+16;+1N£ +
let(l)GnglNé + N2€t+1st(1)/N{

We have already derived that
(NS (1)S,(1)'Ny)™ = 2Y (2)
We can similarly derive that
(N2€t+1€:e+1Né)Uec = ZY™

where
2
Hi
€EHEFL
eps —_ b 3
Yt —
EFtEH
2
€rt

and

21,1

21,3
221

NI
I

22,3
23,1

%33 |

2= ()™
where 72} is row i of Nj.
Next turn to N1.Sy(1)e;,; Ny. Element (i, j) of N1Si(1)€, N5 is equal to
(n} is row i of Ny and 7} is row j of Ny):

with

n;St(].)€;+1ﬁ] = St(l),niﬁ;-EH_l

16



Similarly, element (i, j) of Nae;y1S; (1) Ny is equal to:
Mier1.51(1)'ny = e in;S(1) = Se(1) nynger
So the element (7, j) of N1Si(1)€}, ;N5 + Noerr15:(1) N7 is:
Sp(1) [nent + nyny] €41
Therefore row i (out of the three rows) of
Bs (N1Sy(1)€, 1 N5 4+ Noeg1.5:(1)' Ny) ™
1s written as:

Bs;15:(1) [nin + niny] €41 + Bsi2S:(1) [naiy + nofty] €441

+Bs,i35:(1) [n17ig + nan)] €41

+Bs ; 4S:(1) [noft] + nafiy) €1 + Bs,i5Si(1) [nehy + nafiy)] €411

+Bs.65:(1)

+Bs;751(1) [n3nt} + naiiy) €1 + Bs,isSi(1) [nang + naniy) €411
(

[

[naf + nafiy) €141
[ ]

+B5,i,9st 1)I [n3’ﬁ/é -+ ngﬁg] €t11

where Bs ,,, is the element of By on the xth row and the yth column. This
is written in a more compact way as:

-
St(1)"Ns i€t 41
where
3 3
. . — § E m —/ —/
N5,’i - B5,i,v,w (nvnw + nwnv)
v=1 w=1
m 3 1 m m Iq.

where By’ ., is element (v, w) of matrix B, where By, is:

Bs;1 DBsis> DBsis
m
B5,¢= Bsia DBsis DBsig

30y EAS]

Here Bf; is the matrix form associated with row i of Bs. Similarly write

Ng,i — (B4 + B5Z)?Zn
Nii = (B2)]
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These are the matrix form of row 7 of the respective matrices.
Putting all these steps together, (65) becomes

Si+1(2) = N1.Sy(2

) +
S¢(1)'N31S¢(1) + €, 1 Nag€ry1 + Se(1) N €641

+ | Si(1)'N328:(1) + €, 1 Naserp1 + Se(1)'Nsoer1 | + Noo® (66)
Si(1)'N33S:(1) + €, 1 Nagerr1 + Si(1)' N s€r41

where

N3; = N:m‘ + ‘71‘,1
Ny N4,z‘ + Vz’,Q
Ns; = N5,i + ‘_/1,3

This describes the dynamics of the second-order components of the state
variables.

2.4 Expected portfolio return

We finally derive the second-order component of the expected portfolio re-
turn, Etrfﬁ@), which is needed when computing the second-order compo-
nent of the Bellman equation in section 3. We obtain the second-order com-
ponent of Tfﬁ from the second-order component of equation (61) in Appendix
A of the paper. This gives

r(2) = rrga(2) + (1= k(0)(rres1(2) — T (2) — 7) + pe(2) — peea (2)
(a1 (1) = rpaea (1)) kgr (1) +

SRO)(1 — KO) (i ea(1) = 7 (1)) (67)

Start with the expectation of the last two terms in (67). As the expected
excess return is zero to a first order and the portfolio shares are known at
time ¢, we have

E(ripi1(1) — rpe(1)kj (1) = ki By (s (1) — 7pega (1) =0

From the first-order solution the first-order component of the excess return
is proportional to the innovation €/}, since the expected excess return is zero

18



to a first order. We write the first-order component of the excess return as
rai+1(1) — rpep1(1) = rppery,. Therefore

E(raea(l) — TF,t+1(1))2 = 27‘12:)EU2

As shown later (in section 4), the expected excess return is also zero to a
second order, so the expectation of the second term in (67) becomes:

Ey(rpe1(2) = rae(2) = 7) = =7
and (67) is written in expected terms as:

Eirtih (2) = Brp e (2)+00(2) = Eipeit (2) = (1=E(0))7+k(0) (1= k(0))rppo”

(68)

Turning to the consumer prices, the second-order component of the home
CPI (equation 57 in Appendix A of the paper) is

(@) = (- e~ 5 (A -1 a(l-a)pr,(1)?

= Ps5:(2) + (1) Do Si(1) + kpo®
where we used (60) and:

Ds = (1 - a)ps
ﬁss - (1 - a)pss - 5 ()\ - 1) 05(1 - a)p;ps

kp = (1—a)k
Using (66) this implies:
Eipri1(2) = psN1Si(2) + Si(1) Pss Si(1) + po

where:

3
ﬁss = N{psle—i_Zps(U)NS,v

v=1
]3 = ﬁsNG‘i‘ffp"_ﬁ
3
p = trace Zﬁs(”)N4,v+N£ﬁssN2

v=1
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We next turn to Eyrpg441(2). Using equation (59) of Appendix A of the
paper, the expected second order component of the Home return is

Erui1(2) = —qui(2) +reErquit1(2) + roErapi1(2) (69)
1 1
+§7“qutCIH,t+1(1)2 + §TaaEtaH,t+1(1)2 + rgaBrqu i1 (1)am 1 (1)

where 7, = (1 — 1) (1 =90) ™, ra = 1 —rg and 7y = Taq = —Tga = 74(1 —1,).
Consider the last three terms of (69) first. We can simply substitute the
first-order results. Using g 411(1) = ¢7S¢(1), we have

Eqmia(1)? = EuSi(1) (¢ (1)) ¢S (1)
= Su(1)'N{(qf)'qZ NS, (1) + er0”

where e; =trace [N( Hyq! Ng] Similarly, writing ag 1 1(1) = afSi(1) +
afle;, 1, where aff = (0. 5p,0 p) and af = (1,0), we have

Eapia(1)? = Sy(1) (af) a’ S, (1) + e3o?
= Sy(1) (af),afst(l) +all (ag),UQ
where e3 :trace[(ag )’ ag] Finally:
Eqpga(Damen (1) = B MSi(1) + ¢, Naerar) (0] Si(1) + ag€r41)
= Si(1)N; (¢7) al’S,(1) + ez0
where ey =trace [Né (¢ )/ ag}.

Next consider the first three terms of (69), using (61) and (66):

gue(2) = q'Si(2) + Si(1)qlS, (1) + ko
Eiqri1(2) = ¢7NiSH(2) + Si(1)GssSi(1) + Go?

where:

CjSS = 1qssN1 + qu N3U

N6+/<:H+q

2
I

g = trace Z ¢t (v)Naw + NyglIN,
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The last elements is: Eyam41(2) = a5,(2).
Putting all our results together, (68) becomes:

ErP1(2) = r4S1(2) + Si(1)'r45:(1) + 7o (70)
where

qs +rqqs Nl +Taa +ps ﬁle

R o1
r = —kf + Tqq + 5 Eraa€3 + T'qa€2

thy =P+ E(0) (1 =k (0)rds — (1 —k(0)=

Tqq€1 +

1
§7°qu{ (QE)IQENI
1

+ran{ (QE)/ asH + Eraa (af)l af +pss - ﬁss

= _qg + chjss +

3 First and second-order components of Bell-
man equation

3.1 Second order Taylor expansion
The Bellman equation for the Home country is listed in equation (55) of
Appendix A and repeated here for convenience:

O+0()+0(2)+ 11 (1)

= B(1— w)Et€U(0)+U(1)+U(2)+fH(St+1)+(1*7)rt4’rb1[ (71)

By B0
We only list the zero, first and second-order components of the constant term
v since higher order components will not matter for the analysis. We will
write the first and second-order derivatives of fy at S = 0 as respectively
Hl,H and HQ,H-

Taking a second-order Taylor expansion of the left hand side of (71)
around S = 0 and v(1) = v(2) = 0, we get

eV (0)+v(1)+v(2)+fr (St)
= "D +v(1) +v(2) + Hi,uS)

1
+2€v(0 [[U(l) ( ) + Hl HSt] + S£H2,Hst:|
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Similarly, the first term on the right-hand side of (71) is expanded around
S =0,v(1) =v(2) = 0and ] = 7. Denote #*/] = r»1/ —7. A second-order
expansion then gives

eV (O +o(D)+0(2)+fu (5t+1)+(1—7)ffﬁ

= O+1-r [1 +o(1) +v(2) + HigSeer + (1 — fy)ffﬁ]

2
_’_lev(O)—‘r(l—'y)F [U(l) + U(Q) + Hl,HSt—i—l + (1 — ’y)ff_’f{] ]

+S£+1H2,H5t+1

The last term on the right-hand side of (71) is expanded as
Y
et [a -]
Combining the terms of order zero we get:

v(0) Bpet="
e’ = _
1— B (1 — w) e(l=7)7

It is convenient to substitute this result into the remaining terms of the
second-order expansion of the Bellman equation, which gives

(1) +0(2) + Hy g + 3 [[001) +0(2) + Hy S + 5Ha )
[Um +0(2) + Hy g Spsr + (1 — W)ffﬂ

2
[U(l) +v(2) + Hig S + (1 — y)fffﬂ ] (72)
+S£+1H2,Hst+1

- (1 _W) Ey 1
T3

. 1 ]2
B (=it + g [0 -]

where:
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3.2 First order terms

Focusing on the first-order terms in (72), we have

v() + HinSi(1) = (1=9) B [v(1) + S (1) + (1= ) ()]
' By(1 = )i (1)
= (1—¢) (HygNiSi(1) + (1) + (1 —~)r.Si(1)

where we used (49) and the first order equivalent of (70), namely: Eyr¥/l (1) =
rs5¢(1). This clearly implies that:

v(l) = 0
Hig = (L= (I—(1-¢)N)~ (74)

where [ is a 3x3 identity matrix.

3.3 Second order terms

Now take the second-order terms in (72).
1
Hl,HSt(2) + §St(]_)/ (H2,H + HLHHLH) St(l) + ’0(2)

= (=B (HinSenn(2) +02) + 551 HaaSiea(D)) + (L= ) B2

1

+§(1 — ' )E, <H1,Hst+1(1) +(1— 7)7"545(1))2 + %@Z),Et [( 7>Tf£(1)]2

Using (70) and (66) the second order terms become:

1
Hy 1S5¢(2) + §St(1)/ (Hom + H{,HHLH) Sy(1) + v,

= (1=¢)HigNS(2) + (1 =) H,uNeo” + Si(1)F1S(1) + fio?
+%<1 — )i (1) N{Ho g N1Sy(1) + fao?

+(1 = )reS(2) + (1 = 9)51(1) 145y (1) 4+ (1 — y)fo” (75)
+%(1 — ") EySe1 (1) Hy p Hy 1 Spa(1)

(=B, (D) + (1= ¢ = ) ESea (1 H b (1)
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where

3
- W) Z Hl,H(U)Ns,v
v=1

fi = (1 — ¢ )trace [Z H1,H(U)N4,v]

v=1

1
5(1 — w')trace {NéHQ’HNQ]

The first-order component of the portfolio return is

P (1) = kO)r e (1) + (1= k0)reea (1) +pi(1) = pena (1) (76)

Using

fa=

Ta1(1) = —qui(1) +79qme01(1) + raam (1)
rre1(l) = —qre(1) +79qres1(1) + reapr1 (1) + ropresa (1)

the first-order component of the portfolio return can be written as

i (1) = r.Si(1) + rpeca (77)
where 7y is as in (70) and:
rE = k(0)rqq? No + (1 — k(0)) (rqqf No + rapsNo) + 7 — (1 — )psNo
with
7=[ kO)ra (1—Fk0))rq ]
Using the first order solution for 7}](1) the last three terms in (75)
become:
1
S(1- V) EpSea (1) Hy gy Him Sea (1)
1 2
+500=2E (1) + (1= )1 = DESea (1) H gt (1)

_ 1 / I a7l 7/ 2 2 /2
— Z(1-— ! ’ 5(1 —
2(1 ") S (1) N Hi Hy aN1Si(1) + f30 + 0.5(1 — v)*rprzo
+(1 =) (A =) S(1) N H yreSe(1) + fao?
1
+§(1 —7)25:(1)'rirsSi(1)
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where
1
fo = (L= )trace [NH] i Hi o]
fo = (1= )1 —)trace [N3H; yr]

Using these results along with (74), (75) becomes:

1 ! ! !
5515(1) (Hou + Hy i Hy i) Si(1) +¢'v(2)

1 / (,1 _¢/)N{H27HN1 +2F1 —f—?(l —’V)Tss—f—
= S | (1= )NH] yHygNy+ 21— 0') (1= 7)N{H] ot | S,(1)
+(1 = 7)*rirs
+ [ =" YHi,uNe+ fi+ fo+ 3+ fa+ (1 —7)F +0.5(1 — 7)°rpri] o

This implies:

/ _( A=) HigNs+ fi+ fot fs+ f
o= (O )

and:
H2,H = (1 — ¢,)N{H2,HN1 + H3 (78)

where

Hy = —H|  Hiy+2F +2(1—)rs + (1 — )N H|  Hy g Ny
+2(1 = " )(1 = y) N Hy s + (1= 7)*rirs

To solve for Hy i from (78) we write it in vector notation:

Hymia
Hypmap
Hypmas
Hypon
Hy% Hypoao
Hymas
Hj 3.
Hypao
Hym3s |

I

where Hj fr ., is element (z,y) of matrix Hs i, and vec denotes the vector-
ization of a matrix.
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The element (7, j) of N{Hs g Ny is
~1 ~ A ~ap\veCT! rryec _ vec
nHo gy = [(nzn]) } HQ,H = ”i,jH2,H

where 7n; is column ¢ of matrix N;. We write

nia
nis
n31

n3s

It then follows from (78) that
Hyh = (1) N HyS + Hy
which implies: R
HyS = (I — (1= ¢ )N) " Hy* (79)

where [ is a 9x9 identity matrix.

4 Second and third-order components of the
optimal portfolio equations

The Euler equations for optimal portfolio choice are used to solve for the
difference in portfolio shares. Using (73) and v(1) = 0, the Home and Foreign
portfolio Euler equations (equations (53) and (54) in Appendix A of the
paper) become

E, [(1 _ ¢’)ev(2)+v(3)+fH(5t+1) + @Z)/} e—Wfﬁ‘*‘Tg,tH (80)
= E, [(1 _ w’)ev(2)+v(3)+fH(St+1) + ¢’} e_wfff‘*‘rﬁtﬂ_T

and
E, [(1 _ w’)ev(2)+v(3)+fF(St+l) + Qb’} 6*7rf4€+rg,t+1*7
= B [(1 = f)er @@ (S 4 yf] e
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where elements of v higher than third order are omitted as they are not
relevant for the analysis of second and third-order terms that follows.

A first order expansion of either relation shows that the expected excess
Return is zero to a first order:

E, (TH,t+1(1) - TF,t+1(1)) =0

4.1 Second order component of optimal portfolio equa-
tions

The second-order component of the Home portfolio Euler equation (80) is

1 1
0 = Brien(2) = rren(@) +7) + 5B (rff (D))" = 5B (rffe: (1)
B (D) (1) = reea(1) +

(1 =) EHy g Sea (1) (ra41(1) = rpeya(1))

. H _ H _ .
Since THi+1 = THt+1 Dt — Prya and TEir1 = TFt+1+ Dt — D1, 10 follows that

SE (e (1) = 5B (i (1))
= B (e (D = 5B (et (D + B0 ~ pen (D)D) = rra()

so that the second-order component of the Home portfolio Euler equation
becomes

0= E(riren(® ~ rrn(®) + 1)+ 3E0maD) — s BlreeaD)?  (81)

B (1) = pea(D) = 1) + (1= 9 HinSesa(D) (rmens (1) = e (1)

Following similar steps for the Foreign optimal portfolio condition we get

1

0= Ey(rmi+1(2) —rpea(2) —7) + %Et(TH,t+1(1))2 - §Et(7‘F,t+1(1))2 (82)

+E, (5 (1) = pia (1) = 9810 + (L= )y Sen (1)) (g (1) = 7 (1)
Taking the difference between (81) and (82) we get
0 = 27— B (e (1) = pe(1) = 0 () = 5 (1) (rarasn(1) = (1))
B (2 (1) = 2R 0) Gaaa (1) = e (1)
+(1 =) Ey(Hy i — Hi,p)Sera (D) (P (1) — mrgsa (1))
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Since the first-order components of Home and Foreign portfolio returns are

Tfjg(l) = k0)(rg1(1) —rpi1(1) + rrga (1) + pe(1) — prga(1)
(1) = =k(0) (raasa(1) — P (1) + raaga (1) + pp (1) — piyy (1)

i (1) = P (1) = (2K(0) = D (rmen (1) = reea(1) +
(Pe(1) = pera (1)) = (P; (1) = Py (1))

Use that the first-order solution of the return differential is rpy (1) —
rri1(l) = re€ry1, where

Te = [ TDE _TDE}

Also using (74), the second-order component of the difference between the
Home and Foreign portfolio Euler equations then becomes

0 = 27+ (v = DE; ((perr(1) = pe(1)) = (i (1) = P (D)) (rresa (1) — rpeea (1))

—(2k(0) = Dvar (rs1(1) = rre (1) + (1 =)o (Hiyg — Hyp) Nor,
We can then solve for k£(0) as

1 T

2 " yoar(ri (1) = rrea (1)

+17 — 1 E (pt+1 — P )) rae1(1) = rrea(l))
2 v var(ru1(1) — TFt+1(1))
1(1 —"Yo*(Hyy — Hy p)Nor!
2 yvar(raga(1) — reega(l))

k(0) =

(83)

One can also think of this as a solution of the zero-order component of the
difference in portfolio shares, which is 2k(0) — 1.

4.2 Second-order expected excess return

The solution of k(0) is based on the difference between the second-order
components of the Home and Foreign portfolio Euler equations. Given the
solution for £(0) we now return to the second-order component of the Home
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portfolio Euler equation (81) in order to solve for the second-order component
of the expected excess return. We start by writing

1 2 1 2 __
B (rHe1(1)” = SE(rrea(1))” =
S E(rmen(1) + e (D)ea(l) — rrua(l) =

Erfiy (D) (rgesa(l) — rrea(1) =

B (a0 + oress(D)) Cmens(D) = (D)

— (af(l) + %pF,t(1)> Ei(ragpa(l) —rpea(l)) =

1
EEtPF,tH (D) (rass1(1) — rpesa(1))

where we used (25), the fact that the first-order expected excess return is
zero and that €2, is uncorrelated with €7 ;. In addition we write

Ext (1) (raea(1) = reea(1) =
k(O)var(rua(1) — rrea(1)) + Eirpea (1) (e (1) — reea (1))

+E(pe(1) = prra (1) (ra 2 (1) = 7 (1))

Using 7’Ft+1(1) 7” (1 0. 5Tt+1(1) = afﬂ(l) at+1(1) + 0. 5<th+1(1) -

) —
pra(1)) = 0508, (1), we get

Erpi1(1)(rmea (1) —rrea(1)) =

1 1
—§UGT(TH¢+1(1) — (1)) + §Eth,t+l<1)(TH,t+1(1) —7rrey1(1))

The expected product of the portfolio return and excess return is then

2k(0) — 1
Etrfjr[{(l)(TH,tﬂ(l) —rpa(l) = LU@T(TH,z%l(l) —rpiy1(1))
20 — 1

2

+ Eippi (1) (11 (1) — rpgga(1))
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Using these results, (81) becomes

0 = Ei(rue(2) —rrea(2) +7) +

(1 =) 2 Epren (e () = e (D)

2k(0) — 1
2O L (1) = e (1) +

(1 =)V Hy g EeSe 1 (1) (ra41(1) = 7reg1(1))

Using (83) we get

Eirinent(2) = rren () = —5 (1= )y + Hp)o?Nar! (84)

(84) shows that the expected excess return is zero to a second order. This can
be seen as follows. Because of symmetry, the first two elements of H; y are
equal to minus the first two elements of H; r as they multiply cross-country
differentials. The last element of H; j is the same as the last element of H; g
as they apply to the worldwide shock. The first two elements of Hy g+ Hy r
are then zero. Writing wpp as the coefficient multiplying €/, in the first-
order solution for w/,, we have

1 -1
'DE
/
Nor e = Wpg —WDE
1 1 ~TDE
2 2
2
= 7rpe | 2wpEk
0

Since the first two elements of Hy gy + H; p are zero, it follows that (Hy g +
Hy p)Norl = 0 and therefore Ey(rg4+1(2) — rpe1(2)) = 0.

4.3 Third order component of Home’s optimal portfo-
lio equation

We will denote & = = — z(0) for any variable x. A third-order Taylor expan-
sion of the left-hand side of (80), treating the sum of terms in the exponentials
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as one variable, is equal to (ignoring the multiplication constant e(=)7)

(1—4") (fH(StH) - 772535 + g1+ Pr— Prra +0(2) + U(3)>
+%(1 — ) (fH(St+1) — VPP Prpn + P — 1 +0(2) + U<3)>2
+%(1 — ) (fH(St+1) — P Pren + P — P +0(2) + U(3)>3
+1) <_szﬁ + PHtr1 + De — ﬁt+1>

+%¢/ (—vffﬁ + THp1 + D — ﬁt+1)2

—I—%d/ (—’yﬁ”ﬁ + Tt + D — ﬁtﬂ)g

The right hand side of (80) is the same except that 7p 41 is replaced by
Tri+1 — 7. Combining both sides of (80) we get

0 = E(Pu1—Tre1+7)
1 . .
+§Et ((TH,t+1)2 — (Prig1 — 7')2)

+(1 =) E(Prsr — Prea + 1) (fr(Sua) +0(2) +0(3))

(P — Preen + T)(_foﬁ + Pr — Dr+1)

L0, (85)
where
O3 = éEt ((Pri1)® — (Fres1)®) +
5B (ren)? = () (=9 4 b= P + (L= ) fi(S))
+%(1 — V) E (P41 — Tris) <fH(St+1) — P+ P — ﬁt+1>2
+%¢/Et(fH,t+1 — Trt41) (‘Wfﬁ +p— ﬁt+1)2 (86)

In the expression for O3 we have omitted 7, v(2) and v(3) since when multi-
plied with other terms they lead to fourth and higher order terms.
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The third-order component of (85) is equal to
0 = Et<rHt+1(3) — TFt+1( )) + 03 (87)
+cov, (TH t+1 — TFt+1, Tt+1 +(1 - ) fr(Seg1) — 77"53:]1{ +pr— pt+1>

7B, (rfa (1) + (U= ) Hy S (1) = 9 (1) 4 p (1) = pra (1)

where cov, is defined as cov,(z,y) = Exx(1)y(2) + Exx(2)y(1) and Ojs is equal
to (86) after replacing each variable with its first-order component. v(2) drops
out as it only enters the third-order component of (85) when multiplied with
the first-order expected excess return, which is zero.

We now simplify the cubic terms in (86) by substituting the first-order
solution of all variables. Using that rp;1(1) = rf,(1) + 0.5r2,(1) and
rriea(1) = rfi (1) — 0.5r2,(1), we have

E, ((TH¢+1<1))3 - (TF,t+1(1))3) =E; (i(rg-l(l))g + 3(Tﬁ1(1))27‘ﬂ1(1))

) = rpgper, the first term of the above expression is zero because
0. Therefore

E, (T’H,t+1<1)3 - TF,t+1(1)3) = 3Et(7’f+1(1))27”gl(1) (88)

Since r, (1
Ey(en)® =

Define
lita(1) = 7‘211(1) - ’erfll(l) + pe(1) — peya(1)
Then (86) becomes

1

Os = S(1=V)E(ram1(1) = rrea (1)) (ha (1) + HypSia (1)

—l—%let(rH,tH(l) - 7‘F,t+1(1))(lt+1(1))2 (89)

We can simplify this further by using the second-order component of
Home’s optimal portfolio equation, equation (81), which we write as

Et(TH,t+1<2) — rF,t+1<2) -+ T) +
Ei(ria(1) = rpeea(1)) (e (1) + (1 = ') Hy 5#S141(1)) = 0

We have shown that Ey(rg.1(2) —rpe1(2)) = 0. After substituting the
first order solution for the variables we then must have

rppEy (L (1) + (1= ¢ )Hy g Spa (1)) eq = —7
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The variables in the big parentheses depend on Sy(1), €, and € ;:
L (1) 4+ (1 =) Hy g Sia(1) = AgSi(1) + Brel, + Creiyy (90)
As Bl = Eiet 1€l = 0 we get:
2Byrppot = —1 (91)

as F; (eﬁrl)2 = 202.
Next use the fact that

Hi gSi1(1) = Hy g N1Si(1) + Hy g No€ryq =

fusSe(1) + fupefy + fraciy, (92)
where:
fos = HigM
fup = Higi+ Hig2wpe
foa = Hiug
where we used:
[ 1 -1 .
HygNo€ry1 = [H1,H,1 Hipmo H1,H,3] Wpgp —WDE [EHHI}
| 05 05 e
[ etDﬂ
= [HLH,l H1,H,2 HI,H,3] wDEGtDH
624+1

Substituting (90) and (92) into (89), we get (recall that Ey(ef,)® =
Et(€f+1)3 = Et(€?+l)2€tD+l = EthAH(EBrl)Q = Et€?+1€tD+l =0)

O3 = 20%rpp (Ba Ay +¢'(1 — ') fup fus) Se(1) (93)

Using (93) the third order expansion of the Home optimal portfolio (87)
is written as

0 = E(rami(3) —rrmsa(3))
+20’27"DE (BHAH + ¢/(1 - ¢,>fHDfHS) St(l)

“+covy (TH,tH — TFi+1, 7’211 + (1 =) fu(Se) — vrf’ﬁ + P — pt+1>

7B (1 (1) + (1= ) HimSiaa (1) = 32 (1) + (1) = pisa (1)
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Focusing for a moment on the last term, using (90), (91) and Eie,, =
Eiel | =0, we write:

7B, (ria (1) + (1= ) Hy S (1) = 18 (1) + pul1) = pria(1)) =
TAHSt(l) == —QBH’I"DEU2AHS75(1)

The third-order component of the Home optimal portfolio condition then
simplifies to

0 = Ei(rgi1(3) —rrea(3) + 20°rped’ (1 — ) fup fusSi(1)
+cov, (TH,t+1 — R, T + (1 =) fu(Sen) — 77“55 — pt+1)(94)

where p; is preset and can be ommitted from cov;.

4.4 Combining the Home and Foreign optimal portfo-
lio equations

Following similar steps for the Foreign country and writing (analogous to
(92) for the Home country)

HypSi1(1) = frsSi(1) + frpefiy + fra€ig (95)

the third-order component of the optimal portfolio equation for the Foreign
country is

0 = Ei(rpi1(3) —rpe1(3)) + 2027“DE¢/(1 — ") frpfrsSi(1)
+covy (TtDJrla 7‘24+1 + (1 =) fr(Sp41) — 77"?5:; - P:H)
where 7“,2_1 = THt41 — TFi+1-

Taking the difference between the third-order component of the Home
and Foreign portfolio Euler equations we have

0=20"rppy’'(1 = ¢')(fupfus — frofrs)Si(1) (96)
+covy <7"£r1a (1 =" )(fu(Se+1) — fr(Si)) — V(T?f{ - Tfﬁ) — (P41 — P:H))
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The second-order component of Home and Foreign portfolio returns are
T (2) = kO)rme(2) + (1= k0)(rre(2) = 7) +pu(2) = P (2
+%’f(0)(1— (0 (ra (1) + 7 (D (1) 97)
i (2) = (1=k(0) (rre (2) = 7) + k(O)ree (2) + 97 (2) — pia (2)
+%k(0)(1— F(0)(ria (1)) = s (Dkg, (1) (98)
The difference is
T (2) = rih(2) = (2R0) = Drfa(2) + (0d2) = 27(2)) — (e (2) — P (2))
+ria(DE (1)

The first-order component of the portfolio return difference is
i (1) = rff (1) = (2k(0) = Dy (1) + (1) = (1) = (pena (1) = 1 (1))

Substituting the first and second-order components of portfolio return
differences into (96), we have

0 = 20%rppd’ (1 —¢")(fupfus — frofrs)Si(1)

)
(

+(1 = ¢")covy (rp, fu(Ser1) — fr(Set1))

—y(2k(0) — Dvar(r,) (99)
+ (v — 1) cov, (Tﬁl,pm - p:ﬂ)

vk (VWvar(r, (1))

where var(z) = 2Ex(1)x(2) and var(r2 (1)) = 2r% go>.
We can use this to solve for kP (1):

EP(1) = —(2k(0) — vary(rf,) v = 1cov(rfiy, Pr — Piy)
CO = RO = e Oy T T T st
€0V (184, fr(Se1) = fr(Sit1))
= L)
2 , n(fupfus — frofrs)Si(1)
+20’ TDEw (1 - 77/) ) ’yvar(rﬁ_l(l)) (100)

This corresponds to equation (43) of the paper, where er;,; = rgrl and using
that from (92) and (95)

Ey (fr1(1)? = fre(1)?) riy (1) = 4rppo” (fusfup — frsfrp)
where f;41(1) = HygSi41(1) and frea(1) = Hy pSia(1).
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4.5 Computing third-order expectations

Let R, and R, denote, respectively, the first and second-order components of
r,ﬂl. Similarly, let F} and F5 denote the first and second-order components
of fy(Sii1) — fr(Siy1) and Py, P the first and second-order components of
Pi+1 — Pryq- In order to evaluate (100) we then need to compute E;Ri Ry,
EtRlFQ, EtRlpg, EtRQFl and Ethpl.

The computation of these terms uses the second-order solution to the
model. Let’s start with the first and second-order terms of r2,. We know
that the first order term is rppel, ;. Using the definitions of returns (equa-
tions (59)-(60) in Appendix A of the paper), the second-order components
are

re+1(2) = —th(Q) +7q¢qH, t+1(2) + (1 —ry)ami1(2)
+ 5 (g4 ( + (ams1(1))® — 2qm+1(1)ap41(1)]
rri1(2) = _QFt(z) 7"q(]Ft+1( )+ (1 —ry) (api1(2) + prita(2))
1] (grea(1 )%+ (are1(1)? + (Pre1(1)? + 2ar:01(1)presa (1)
2 1 —2qp141(1)arpis1(1) — 2¢p01()presa (1)

where r, = (1 — 1) (1 —¢0) ™" and oy = 4 (1 — 7). The second-order solu-
tion for the relative price of Foreign goods and equity prices are (60)-(62).

The second order components in 7z ;41 and rp¢41 take four different forms:
(i) quadratic in S;(1), (ii) proportional to ¢, (iii) quadratic in the innovations
ét+1 and (iv) product of S¢(1) and innovations. We focus on the difference
between 7441(2) and rpyy1(2). We know that the expected value of this
difference is zero. We can then ignore (i) and (ii) as they are known at time
t. We can also ignore (iii). The expected value of those terms in R; is zero.
When multiplying them with first-order terms later on, we can therefore
ignore them to the extent that the first-order terms are linear in the state
space (the expected product of those terms in Ry times S;(1) remains zero.)
To the extent that the first order terms are linear in innovations, we can
ignore them as well since the expectation of any cubic form of innovations
is zero. The only relevant second-order terms are therefore ones that are
products of the state space at time ¢ and innovations at t + 1. We will
therefore focus on those terms only.
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Using (60)-(62) the second-order component of the excess return is

Ry = rg41(2) — rre1(2) =

= [(a" = ¢) 8:(2) + S(1)' (55 — 455) Su(1) + (k)" = k) o]

+rq (@ — af) S (2) + Seaa (1) (¢ — ¢L5) Sepa (1) + (kT — k7 ) 07

+ (1 —1g) [aH,t+1(2) — api41(2) = psSi41(2) — Se1(1)'Pss Sea (1) — kpaﬂ

(qr+1(1))* + (ame1(1))* = 2qme11 (D) ape1(1)
+§qu —(qre+1(1))? = (apr+1(1))? = (pres1(1))? = 2ap41 (1) pria (1)
+2qpi11(1)apii1(1) + 2¢pir1(1)presa (1)

The productivity terms are exactly first-order by assumption, hence ap ;1 1(2)
api+1(2) = 0. Using (49), (66) and

agg1(1) = pagy(l) + emga = all Si(1) + ap e
apia(1) = paps(1) + e = a7 Si(1) + aper

the terms in the expression for rp;11(2) — rpe11(2) that involve the product
of S;(1) and model innovations are

(1) N5 1€t+1
[Tq (q — 45 ) (1 )ps] (1) Ns 2641
(1)'N5 3€t41
+25,(1)' Ny {Tq (qg - qss) (1—- Tq) ss] N2€t+1
251Ny [(a2)' o = (a) 0 = (0) po 4 (a) po 4+ (92) F | Mo
I +2st (1) [(at") a <a5>’ af| e
+=ryq o 1 5
2 —25,(1 [(q ) [( S) (ps) @E} €t+1
_ —2st< y [(af 0l = (af) [aF = p]| Noeria
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Another way to write these terms is

St(1>/ [Z [Tq(qfu - qgv) - (1 - rq)psm] N5,’U] €41

—(1- Tq)pss] Na€iyq
‘g — (@) gl — (ps) ps + (aF) s + (ps) ¢F | Nora
- (af)'aﬂ €41
s IQE - (aF)/ F} No€yyq
1)'Ny [ qf)’ B (qs ) aE] €t+1
$)PsNa€ri1 = 149Si(1)' Ny (ps) afperi

+74qSt
—quSt

—T'qut

A~~~ A/~
—_
~— — ~— ~—

~

—qu St

where ¢/ ' 1s wth element of the vector ¢! and similarly for p . We can write
these terms in a compact way as St( ) Met+1 Since R; = ’I“DEEt_H Te€ti1s
it follows that

E,R\Ry = 0*S,(1)' Mr! (101)

We next turn to P, the second-order component of py1 — pf, ;. We have
1
pe+1(2) = (1= a)ppe+1(2) — 504(1 —a)(A—1) (pF,t+1(1))2 (102)
. 1
Pia(2) = aprea(2) — 504(1 —a)(A=1) (prin(1))? (103)
Combining this with (60) we have

Py = pe1(2) = pia(2) = (1 = 20) (psSes1(2) + Se41 (1) PssSera (1) + kypo®)
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Using (49) and (66) this becomes

P, = (1 - 2a)pleSt( ) (1 - 204)175]\7602

+(1 — 2« St (Zps UN3 v) St
+(1 - 2a)€44 (Zpé‘:”N‘*:”) €111

v=1

+(1 - 2@ St (Zps UN5 v) €t+1

+(1 —20) S, (1)' Nipss N1Si (1)

( )
+(1 — 200)€; 11 Nopss No€y i1
+(1 — 2a)25;(1) N pss No€ 11
+(1 = 2a)k,o?

Recall that P, = (1 — 2a)ps [N15:(1) + Na€yy1]. Using these results and
focusing on the terms in the cross product of S;(1) and ¢, we have

ERiP, = 2(1—2a)0%S(1) NipssNor! (104)
(1 — 20[ O' St (Zpst5v> e
ERyP, = (1—2a)0%S,(1)MNjyp, (105)

Finally consider F3, the second-order component of fr(Sii1) — fr(Sis1).
We have:

1 /
Fy=(Hi g — Hip)Si1(2) + §St+1(1) (Ho,mw — Ha p)Si41(1)
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Using (49) and (66) this becomes

Fy, =
(Hyy — Hyp)N1Si(2) + (Hy g — Hy ) Ngo?

+S;(1) (Z(HLH,U - Hl,F,v)N3,v> Sy(1)

v=1

3
(Hl,H,v - Hl,F,v)N47v> €t+1
v=1

+eppq (Z
, 3
+St<1)/ (Z(HLH,v - Hl,F,v)N5,v> €t+1
v=1
1
+§St(1)IN{(H2’H — HgyF)let(l)
1
+§€;+1N£(H2,H — Hy ) No€riq

1 p
+2St( )Ny [(Ho,ir — Ha,p) + (Ho,m — Ha r)'] Na€rq

Recall that Fy = (Hy g — H1r) [N15:(1) + Na€ry1]. Using these results and
focusing on the terms in the cross product of S;(1) and €1, it follows that

E.RF,

EiRy Iy

1
= 502&(1)'1\7; [(Hypr — Ho ) + (Hayg — Hor)'] Nor!

3
—|—02St(1)' (Z(HLHW — Hl,F,v)N5,v> 7"2 (106)

v=1

= O'QSt(l),MNé(HLH - Hl,F), (107)

To summarize, we have

EyR1 Ry
E\R Py

EiRy Py
E R Fy

E Ry Fy

= 0o°r

= 0'27"6]\_4—/515(1)

= (1—-2a)0’r, [2N2 Pss) N1+ (Zpstg,U)] (1)

= (1- 20{)02p5N2M Si(1)

2 l 3N [(Howr — Hop) + (Hamr — Hop )] Ny

Si(1
+ (Zi:1<Hl,H,v - Hl,F,v)N5,v)/ 1 t< )

= 0-2(H1,H - HLF)NQM,St(l)
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Using this (100) becomes
k(1) = kaSy(1) (108)

where

1
2yrppks = (1 — 1//)7151\[5 (Hog — Hop) + (Hyg — Hop) ] Ny

3

+(1 =) (Z(HI,H,U - H1,F,U)N5,v)

v=1
+(1 =) (Hy g — Hyp) NoM'
—27(2k(0) — 1)r. M’

3 /
+(v — 1)(1 — 2a)2reNy(pss) N1+ (v — 1)(1 — 2a)re (Zps,vN5,v>
+(y = 1)(1 = 2a)ps No M’
+2rppd’ (1 =) (fupfus — frofrs) (109)

where we used var(rf;(1)) = 20%r} 5.

4.6 Third-order component of expected excess return

We have already shown that the first and second-order components of the
expected excess return are zero. We now turn to computing the third-order
component of the expected excess return. We start by taking the sum of the
third-order component of the Home portfolio Euler equation in (94) and its
foreign equivalent:

2B (rir411(3) — rri1(3)) = —20%rppY’ (1 — ') (fup fus + frofrs) Si(1)
—covy (1131, 251 + (1 =) (fr(Senr) + fr(Sia))) (110)

+eovy <T£r1=”7 (rtirl + Tt#l) + (P4 +pt+1)>
Taking the sum of (97)-(98) we write:

P 2) +rP0(2) = rraa(2) + reea(2) — (1= k(0))27
+pi(2) + Py (2) — pr41(2) — p:+1(2)
FR(0)(1 = k(0))(rZ (1))% + 72 (1) (R p(1) = kgny(1))
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Similarly:
P (D) + (D) = raee (1) 4+ 7R (1) + pe(1) + pf (1) — peea (1) — piia (1)

Using these results we write:

A D p.H p.F\ _ o A D A
CoUy <Tt+1>Tt+1 +ri) = QCOUt(TtH,TtH)

—Cévt(rﬁ_lyptﬂ + pria) + Qk?(l)var(rg—l(l))

where we used E;(rf;(1))® = 0. Substituting this result into (110) yields:

Ey(rii1(3) = e (3)) = —0?rpp’ (1 =) (fupfus + frofrs) Si(1)
— (1 =) cov, (Tﬁl, T;j_l) + 0.5 (1 — ) covy (Tg_l,pt_t'_l + pZ+1)

—0.5(1 = ¢")covy (i, fu(Se1) + fr(Si1)) (111)
ki (Lvar, (rf(1))

The last term can also be written as 202r% ,vk2S;(1) where we have written
the first-order solution of the average portfolio share as k*(1) = kA5;(1).

The term involving the consumer price indexes is also relatively easy to
compute from (102)-(103):

) . |
covy (11, Dy + Pi1) = E(EtR1P2 + E Ry Pr)

—Oé(l - (1/)(/\ - 1)2U2T5Nép;psN18t(1)

The two terms in (111) left to compute are then cov,(rf,ri;) and
cov(r2.1, fi(See1) + fr(Sit1)). Let R and R4 denote the first and second-
order component of r{}, and F;* and F3' be the first and second-order com-
ponents of 0.5 [f#(Si+1) + fr(Se1)]. We therefore need to compute E; Ry RS,
EiRy R, E;R F§* and E Ry F{.

In the second-order terms again only products of S;(1) and ¢, are rele-
vant. These terms in Rj are computed analogously to those for Ry computed
above and can be summarized as S;(1)'M*“¢,,1, where
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3
MA =05 [Z [qufv + qiv) + (1 — Tq)Ps,u} N5,v]

v=1
N7 [rg(a5s + 4y) + (1= 7¢) Pss] Ne
+0.574, Ny [( DYl + (@) al + ) s = (aF) ps — (ps)’qf] N,
+0.574¢ [(al)'alp + (aF)'af)
—0.57¢4 [( ag )qs + (a s)QS}N2
_0-57"qu{ [(qf)'ag + (qf)/ag}
+0.5744(a) ps Ny + 057, N (ps) ak

Therefore -
E,R\ R} = 0°S,(1) M4r! (112)

The innovation component of Ri' is 72¢,,1, where
4 =0.5r,(¢" + ¢" )Ny +0.5(1 — r,)psNo + 0.5(1 — 1) (af + ap)

Therefore )
ERy R = 028,(1) M (r2)’ (113)

Analogous to (106) and (107) we have

1
EtRlFQA = ZU2S,§(1)/N/ [(HZH + HQ F) + (H2H + H2 F)/] NQTL

3
—|—0 50’2St (Z HlHU+H1FU)N5’U> Te
E.RyF = 0.50%S,(1) MN} (Hy i + Hy p)'
Substituting these results into (111) we have

Ey(ra41(3) = rrea(3)) = 0°r3S; (1) (114)
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where

rs = —rpe¥’'(1=4") (fupfus + frofrs) — (1 —7) [7“6 (M4) + TfM']

3 I
+ (1 - ’7) TGNép;le + 0.5 (]- - 7) Te <Zps,vN5,v>
v=1
+0.5(1 =) psNoM' — (1 = 7) a1 = a)(A = 1)r Nypps N
1

—(1— W)ZQNQ [(H2,H + Hyp) + (Hom + H2,F)/] N

3

/
_(1 — ¢’)O.57"6 (Z (Hl,Hﬂf + HLF,U) N57U)

v=1

—(1—4")0.5 (Hy g + Hyp) NoM'
—|—2r2DE’yk;4

5 Solution method

The numerical solution proceeds as follows. Conditional on k(0) we obtain
the first-order solution summarized by (45) and (49). The first-order solution
also gives us Hy i from (74), which is based on the first-order component of
the Bellman equation. H; r follows by symmetry. We use these results to
compute a new value for k(0) from (83). This procedure therefore yields a
mapping of k(0) into itself. This mapping is non-linear. The resulting fixed
point problem is solved numerically. At this point we have solved for k(0) as
well as the first-order component of all variables other than k.

Next, we conjecture a solution for the first-order component of k”: kP (1) =
ksSy(1). This affects the second-order component of model equations (see
the discussion in section 2.1). Conditional on this first order solution of
kP we then obtain the second-order solution summarized by (59) and (66).
The second-order solution is then used to compute Hy g from (79), which
is based on the second-order component of the Bellman equation. Hj p fol-
lows by symmetry. We then use these results to solve for k; in (109). This
then leads to a fixed point problem in ks, which is solved numerically. At
this point we have solved for the first-order components of both kP and k7,
which yields the first-order components of all portfolio shares.
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6 Balance of payments accounting

6.1 Definitions

At period t home agents have a nominal wealth of (1 — ¢) W, P, (measured
in terms of the Home good) invested in equities, and Foreign agents have a
nominal wealth (1 — 1) WP} invested. The nominal value of the various
holdings of equities, as well as the quantity of shares held by each agent, is
outlined in the table below:

Nominal value

Quantity of shares

Home agents’ wealth
in Home equity

in Foreign equity

(1—1) WiP,
(1 =) kip Wi P,
(1 =) (1 - kif,) WiP,

Foreign agents’ wealth

in Home equity

in Foreign equity

(1 =)Wy Py
(1 =) (1= ki) WiPY
(L — ) ki Wi B

GH _ (1—)kf Wi P
Hit ™ Qmyt
aH _ (1-y) (1=K YW, Py
Fi Qrt
GF  _ (1—y)(1-kE )W} Py
Hit ( )Qﬁt
F -9 kF,tWt*Pt*
Gth — Qrt

The home net foreign asset position is the difference between gross foreign
assets, GA;, and gross foreign liabilities, G L;:

GAt -
GLt -
NFAt -

(L= ) (1= kyp,) WPy
(1 =) (1= kp,) WP,
GA; — GL,

(115)
(116)
(117)

- (1 - w) [(1 - kg,t) WP, — (1 - kl?t) Wt*Pt*}

We next turn to trade flows. The value of Home exports during period
t+ 1 (measured in terms of Home good) is simply the consumption of Home

goods by Foreign agents:

* )‘ *
Xﬁ&-l =(1-a) (Pt+1) YW,
Similarly for the value of Foreign exports:
XF = (1= a) (Presa)' ™ (Prsa) o Wi
so the Home trade balance is

% \A 1% —
TBuy=X1 - X[ =0-a)¢ [(Pt+1) Wiy — (Prag)! M (Pip) Wi
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Note that it is also the value of output minus consumption:

TBiy1 = Agir1 — VPaiWin
= —PriaAp + P W

which can also be written as:

2T By = (Apgs1 — Pras1Arpi) — ¥ (PpaWi — PEa W) (118)

We now look at international factor payments in period t + 1. The quan-
tity of foreign shares owned by home residents is Gﬁt. Fach share receives
(1 —0) Apyy1 in terms of Foreign goods, so the payment in terms of Home

goods is:
GD} =GP, (1= 0) Py Apia (119)

Similarly the dividend payments of the Home country are:
GD; =Gl (1—0) Apyn (120)
The net dividend income of the home country is then:
NDyy =GD — GDfy = (1-0) [GE,Pryi1Arii1 — G Amai] (121)

The current account is the sum of the trade balance and net dividend
income:

CApy1 =TBii1+ NDyyy (122)
The capital gain on Home gross foreign assets in period ¢ 4 1 is
GKt[il = Gg,t [QF,t+1 - QF,t] (123)
Similarly the capital gain on Home gross foreign liabilities is
GK{yy = Gl [Quen — Quyl (124)

and the net capital gain is:

NEKy1 =GK[ —GK[, = G1,[Qrisn — Qre =Gl [Quirr — Quyl (125)

Recalling that positions are measured at the end of the periods, the Home
gross asset position change between period ¢ and ¢ + 1 is the sum of gross
financial outflows, GF/1,, and capital gains, GK/1,:

GAt+1 - GAt == Gﬂlj_l ‘I— GKﬁ-l
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Similarly for the Home gross liability position:
GLi — GLy = GFf, + GK[,
In net terms we have:
NFA. 1 — NFA, = (GF[,-GF}))+ (GK[, - GK[,)
= NF 1 +NK (126)

where N F} ;1 stands for net financial flows (net capital outflows). In addition,
the net financial flows have to match the current account:

NF = CAq

This is simply a consequence of the dynamics of the net foreign assets re-
flecting the trade balance, net dividend income and net capital gains:

NFApy = NFA, +TByyy + NDyy1 + NKy 4 (127)

6.2 First-order components

We focus on the first-order components of all balance of payments variables.
Some key zero-order components are:

GA(0) = GL(0) = (1= 4) (1=K (O) W (0) = (1~ k(0))

GDH(0) = GD"(0)=(1—-k(0)(1—-0) , GK"(0)=GK"(0)=0
X70) = X" (0)=01-a)
We scale all variables by the zero-order component of GDP, which is 1,

so they can all be interpreted as percentage of GDP. The resulting variables
are indicated with lower case letters. The asset positions (115)-(117) are:

g (1) = T 11 = k) (e (1) +2 (1) = K, (1]
o (1) = [ k(0] (0] (1) + 5 (1) ~ K, (1)
C 1= (=R (0) (1)~ wi (1)
) = T = k) ) — i ()~ 2 (1) | 0P
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where we use the compact notation k{* (1) = k7, (1) = 0.5 (kfi, (1) + kf7, (1)).
The trade flows and trade balance are:

i, (1) = (1-a) [w;rl (1) + Apiy (1)]
ai (1) = (I—a) [we (1) + M (1) 4+ (1= ) presa (1)]

— (w1 (1) —wiyy (1)
thia (1) = (1-a) —A (peg1 (1) (_ Pia (1) = (1= )?> presi (1)

From (118) we also have:

1

then1 (1) = 5 (a1 (1) = prerr (1) — aper (1))
=3 (e (0 + s (1) = iy (1) =y (1)

The dividend flows are:
gdﬁkl (1) =

(1=0) [(1 = k(0)) [pres1 (1) + apeer (1) +wi (1) 4+ pe (1) — qre (D] — kip, (1)]
gdﬂl (1) =

(1=0) [(1 = k(0)) [amss1 (1) +w} (1) +p; (1) — qae (1)] = kg, (1))
ndgi1 (1) =

PFt+1 (1) - (aH,t—H (1) — Apt+1 (1))
=00 =R OD | 4 (ay (1) = w7 (1)) + (0 (1) — i (1)) + (s (1) — e (1)
— (1 —0) 2k (1) (129)

The current account is

Cat11 (1) = tbt+1 (1) + ndt+1 (1)

The capital gains are

gk‘th (1) = T (1 —k (0)) (QF,t+1 (1) —qFt (1))
R (1) = (= (0D (e (1) = s (1)
1 - (1 —k (0)) - <QH,t+1 (1) — 4Fi+1 (1)) (130)

nki1 (1) = + (g (1) — gre (1))
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The gross financial flows (gross outflows and gross inflows) are
gfi (1) = garn (1) = gar (1) — gk, (1) =
T=9 [ (1 =k(0)) [(wesr (1) = we (1)) + (Pera (1) = e (1) = (g (1) = qre (1))] ]
w L - (kg,t-i—l (1) - kg,t (1))
gfg-l (1) = glita (1) — gl (1) — gki&-l (1) =
1=¢ [ (1 =k(0) [(wir (1) —wi (1) + (i1 (1) = pf (1)) = (@resr (1) — e (1))] }

1
v — (Ffp (1) = kg, (1))
We can also check that

Caty1 (1) = gfgl (1) - gftil (1)

6.3 Financial flows and valuation effects

The changes in positions can be decomposed between financial flows and
capital gains:

gare1 (1) —ga, (1) = gffy (1) + gkt (1)
gl (1) =gl (1) = gffLy (1) +ghkfiy (1)
nfai (1) —nfar (1) = caprr (1) + nkr (1)

The net valuation effect can be split between real exchange rate move-
ments (that is movements in the relative price of Foreign goods) and equity
price changes. For this purpose we write the Foreign equity price in terms of
Foreign goods, denoted gj.,. This gives

1-9

(.41 (1) = qrre (1) + (@41 (1) = @iy (1) + (Praca (1) — pre (1))

N / \ 9 ~
~~ ~~

~
equity price on liabilities equity price on assets real exchange rate

6.4 The drivers of capital flows

The changes in Home gross foreign assets and liabilities are written as:
1 —kff,) (W1 Py — Wi F)
- (kg,tﬂ - kgt) Wi Pria
(1 B k%) (WQ%PQI - VVt*Pt*) ]
- (kF,t+1 - kF,t) VVtilPtil
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The changes of invested wealth stem from savings (labor income plus dividend
income minus consumption) and capital gains on Home and Foreign equity.
Using the dynamics of home wealth we get the relation for the Home country:

(1 =) (We1 Py — Wi )

= S+ (1) WP [kgtM +(1—kH,) M}
QH,t QF,t
where home savings are:
St+1 = eAH,tJrl — th+1R§+1 (131)
A Ppy1 A
+(1=0)(1 =) W, P, lkgyt Dy (1 -kl M]
Qg Qr

Using the dynamics of Foreign wealth we get the relation for the Foreign
country:

(1 =) Wy Py — Wiy
QH,t+1 - QH,t

* * % Q 7 _ Q ’

= Sty + (1 —y) WP {(l—kgt) +k£tM
QH7t QFJ

where foreign savings are:
Siiy = OPpipApe — WL Pl (132)

A PriiA

+(1—0) (1—v) WP l(l ) Ame kgtw}
QH,t QF,t

We can show that S, + Sf,, = 0.
Gross financial outflows are the change in gross assets minus capital gains
on Home agents’ holding of Foreign equity:

GF’tﬁl - GAt+1 - GAt - GKﬁl

= (1 B kgt) St41 — (1 - w) (kg,tﬂ B kgt) Wi P (133)
_’_kgt (1 _ kgt) (1 — o) W, P, Quit1 — Qe . Qrit1 — Qre
’ Quy Qry

Financial flows have three components. The first is savings: if Home agents

save S;41 and they invest a share (1 — kff ;) abroad, the outflow is (1 — kff ;) Sp41.

The second component is rebalancing owing to capital gains. Say capital
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gains on Home equity exceeds that on Foreign equity, so the last bracket is
positive. If the desired portfolio shares have not changed, home agents are
now overweight in home equity, so they need to purchase more Foreign equity
(i.e. a capital outflow). The last component is the reallocation component.
It captures changes in the desired portfolio weights. If Home agents want
to increase the weight in Home equity, they need to bring money back from
abroad (i.e. a capital inflow).
Similarly for gross financial inflows:

GFL, = GLy—GL, —GK],

= (1 - kl{it) Sty1— (1—4) (kﬁm - 'Ifz{ft) Wi Pl (134)
_kgﬂ&/ (1 o k£7t) (1 o ’L/J) m*a* QH,t—}—l - QHJ . QF,t—l—l - QFJ]
Q. Qr

The first-order components of (131)-(132) are

ser1 (1) = Oapser (1) — (Wi (1) + pesa (1))
(e (1) + pr (1)) + k (0) (asmeer (1) — qary (1))
T L 1=k (0)) (e (1) + prees (1) — g (1) 1
St (D) = 0 (ape (1) + prect (1) — (g (1) + play (1)
L (1-0) [ (w; (1) +p; (1) + (1= k(0)) (ape41 (1) — g (1))
+h (0) (arpen (1) + pross (1) — gre (1)

—_

Note that s;,; (1) = —s¢41 (1), hence:
se1 (1) = % (8t+1 — Si41 (1))
= 30lemens (1) = ares (1) = press (V) (135)
5 (e (1) = iy (1) F P (1) = pia (1)
Ry w (1) i (1) +p (1) — p; (1)

g | H(2k(0) - )[aiﬂ+ )(1 g1 (1) = pres (1))

) =
—(2k(0 (qae (1) — qre (1))

o1



The first-order components of (133)-(134) are written as:

gftlj-l (1) = \(1 —k (0)) St+1 (1)

7

~
gfasaviy1(1)

0 (0) (1= F0) T g (1) = g (1)) = (arees (1) = ars (1)

(. 4
~~

gfabali11(1)

(Kirpa (1) — K, (1)) (136)

J/

1-9

Ty

gfaaleiq1(1)

9ffn () = =1 =k(0)) s (1)

gflsavt+1(1):tgfa5avt+1(1)

+—k(0) (1 - k(0)) % (g1 (1) = que (1)) = (greea (1) — gre (1))]
) gflbals1(1)=—g fabaly41(1) ’

+—% (kfypr (1) — kpy (1)) (137)

N /

gflalci41(1)

where sav denotes the terms driven by savings, bal the terms driven by
portfolio rebalancing (i.e. undo shifts in portfolio shares caused by capital
gains) and alc denotes terms driven by portfolio reallocation, i.e. changes in
portfolio shares. Net portfolio flows are

nha (1) = (L= k()25 (1) (138)
nfsave+1(1)
428 (0) (1= (0) 7 (gt (1) = e (1) = rasa (1) = g ()
nfbali11 (1)
+—2ﬂ (ki (1) — k(1))

nfalci+1(1)

we can check that nf; 11 (1) = caiq (1).
We define a component consisting of active portfolio management that
combines the rebalancing and reallocation components. It reflects the capital
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flows driven by the fact that valuations changes do not bring the portfolio
shares to their new optimal levels:

gfaactyq (1) gfabalyyq (1) + gfaalegyq (1)
gflactyiq (1) gflbalyyq (1) + gflaleq (1)
nfaactiiq (1) nfabalitq (1) + nfaalciyq (1)
We can show that the net financial flows are equal to savings, consistent

with the national account identity that the current account is the difference
between national savings and investment:

nfaact;iq (1) = (2k(0) — 1) 441 (1)

nfir1 (1) nfsaviyy (1) +nfaactiyq (1)

(1= £(0)) 2141 (1) + (2K (0) = 1) 8141 (1) = 141 (1)

6.5 Components of external adjustment

The rates of return on Home and Foreign equity reflect a capital gain and a
dividend return:

Qri+1 — Quy

Ryt = 1+ On + Dy
Rpn = 1+ W + Dr1
where:
Dy =(1-0) Anen Dryyr = (1— Q)M
Qe Qry

First-order components are

dgi+1 (1) = ages1 (1)—qms (1)

and the return differentials are

dpit1 (1) = apgrr (1)+ppigr (1)—qry (1)

A1 (1) —dpi1 (1) = a1 (1) —apesr (1) — pragsr (1) — (que (1) — gre (1))
s (0= res (0 = § (@mees (1) = areer (1) = (e (1) = g ()
+¢1(1_—:bg) (drs1 (1) = dresa (1))
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Using (128), (129) and (130) the dynamics of the Home country’s net
foreign assets are

nfai1 (1) = nfa (1) + thr (1) + ndiy (1) + nkeyq (1)
= nfa; (1) + b (1) + Mnfat (1)

1—9
— (1 -k(0)) ! _Jw (raren (1) = 7 (1))

where we used the fact that

oy (1) = S0 (1) = (1= 0) (L= b (0) (s () = dres (1)

We rewrite the dynamics of the net foreign asset position as

nfair (1) = thyr (1) + R(0) - nfa. (1)
—GA(0) - R(0) (rga1 (1) = rpasa (1))

where GA (0) = % (1 — & (0)) is the zero-order component of the gross asset
position. Iterating forward we get

nfan (1) = - i (757) 1ee 01GAO Y (k) G = s (1)

s=1
(139)
(139) shows that a net debt (nfa; (1) < 0) has to be offset by future trade sur-
pluses (tby4s (1) > 0) or a higher return on Foreign equity than on Home eq-
uity, that is a higher return on home assets than liabilities (rpg 15 (1) — 715 (1) < 0).
Future returns can in turn be split between capital gains and dividend
yields:

otoc)) = =3 (g5 ) e 0= 3 (57 ) e 1)+ e (1)

s=1 s=1

where nk;, s is given by (130) and:

ndyi (1) = — (1= 0) (1= k (0)) (s (1) = digan (1))
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