Technical Appendix to Risk, Return, and Dividends

Andrew Ang*
Columbia University and NBER

Jun Liu ${ }^{\dagger}$
UC San Diego

This Version: 28 August, 2006
*Columbia Business School, 3022 Broadway 805 Uris, New York NY 10027, ph: (212) 854-9154; fax: (212) 662-8474; email: aa610@columbia.edu; WWW: http://www.columbia.edu/~aa610.
${ }^{\dagger}$ Rady School of Management, Pepper Canyon Hall, Room 320, 9500 Gilman Dr, MC 0093, La Jolla, CA 92093-0094; ph: (858) 534-2022; fax: (858) 534-0745; email: junliu@ucsd.edu; WWW: http://rady.ucsd.edu/cms/showcontent.aspx?ContentID=183

A Relation of Proposition 2.1 to Pricing Kernel Formulations

By definition, given the dividend process D_{t}, the price of the stock is given by:

$$
\begin{equation*}
P_{t}=\mathrm{E}_{t}\left[\int_{t}^{\infty} \Lambda_{s} D_{s} d s\right], \tag{A-1}
\end{equation*}
$$

under the pricing kernel process Λ_{t}, together with a transversality assumption. We assume that the pricing kernel follows:

$$
\begin{equation*}
\frac{d \Lambda_{t}}{\Lambda_{t}}=-r_{f}\left(x_{t}\right) d t-\xi_{x}\left(x_{t}\right) d B_{t}^{x}-\xi_{d}\left(x_{t}\right) d B_{t}^{d} \tag{A-2}
\end{equation*}
$$

where $r_{f}(\cdot)$ is the risk-free rate process, and ξ_{x} and ξ_{d} are prices of risk corresponding to shocks to the state variable x_{t} and dividend growth, respectively. Using equation (A-1), we can express the price-dividend ratio as:

$$
\begin{aligned}
& \frac{P_{t}}{D_{t}}=\mathrm{E}_{t}\left[\int_{t}^{\infty} \exp \left(-\int_{t}^{s}\left(r_{f}+\frac{1}{2}\left(\xi_{x}^{2}+\xi_{d}^{2}\right)\right) d u+\xi_{x} d B_{u}^{x}+\xi_{d} d B_{u}^{d}\right)\right. \\
&\left.\times \exp \left(\int_{t}^{s} \mu_{d} d u+\sigma_{d} d B_{u}^{d}\right) d s\right]
\end{aligned}
$$

assuming that $\sigma_{d x}=0$ for simplicity. This can be equivalently written as:

$$
\begin{equation*}
\frac{P_{t}}{D_{t}}=\mathrm{E}_{t}^{Q}\left[\int_{t}^{\infty} \exp \left(-\int_{t}^{s}\left(r_{f}-\mu_{d}-\frac{1}{2}\left(\sigma_{d}-\xi_{d}\right)^{2}\right) d u\right) d s\right] \tag{A-3}
\end{equation*}
$$

where the Radon-Nikodym derivative defining the risk-neutral measure Q is given by:

$$
\begin{equation*}
\frac{d Q}{d P}=\exp \left(-\int_{t}^{s} \frac{1}{2}\left(\xi_{x}^{2}+\left(\sigma_{d}-\xi_{d}\right)^{2}\right) d u-\xi_{x} d B_{u}^{x}-\left(\sigma_{d}-\xi_{d}\right) d B_{u}^{d}\right) \tag{A-4}
\end{equation*}
$$

Note that equation (A-3) is a function $f(\cdot)$ of x.
We describe how a particular choice of a return process $d R_{t}$, together with assumptions on dividends, places restrictions on the underlying pricing kernel process $d \Lambda_{t}$ through the following proposition:

Proposition A. 1 Suppose the state of the economy is described by x_{t}, which follows equation (1), and a stock is a claim to the dividends D_{t} that are described by equation (2) with $\sigma_{d x}=0$. If the stock return follows equation (8) and the pricing kernel process follows equation (A-2), then the price-dividend ratio $P_{t} / D_{t}=f\left(x_{t}\right)$ satisfies the following relation:

$$
\begin{equation*}
\left(\mu_{x}-\xi_{x} \sigma_{x}\right) f^{\prime}+\frac{1}{2} \sigma_{x}^{2} f^{\prime \prime}-\left(r_{f}-\mu_{d}-\frac{1}{2} \sigma_{d}^{2}+\xi_{d} \sigma_{d}\right) f=-1 \tag{A-5}
\end{equation*}
$$

which determines the price-dividend ratio f. This implies that the expected return $\mu_{r}(\cdot)$ and volatility $\sigma_{r x}(\cdot)$ of the return are given by:

$$
\begin{align*}
\mu_{r} & =r_{f}+\xi_{x} \sigma_{x}(\ln f)^{\prime}+\xi_{d} \sigma_{d}, \\
\sigma_{r x} & =\sigma_{x}(\ln f)^{\prime} \tag{A-6}
\end{align*}
$$

Proof: Equation (A-5) is the standard Feynman-Kac pricing equation. Once the price-dividend ratio f is obtained from solving equation (A-5), we can derive equation (A-6) by equating terms from the drift term of $d R_{t}$ and the diffusion term on $d B_{t}^{x}$ in equation (8).

Proposition A. 1 states that, given the dividend stream, the pricing kernel completely determines the price-dividend ratio f, the expected return of the stock μ_{r}, and the volatility of the stock $\sigma_{r x}$. However, if we specify the price of the stock, the expected return, or the volatility of the stock (each one being sufficient to determine the other two from Proposition 2.1), the short rate r^{f}, the prices of risk ξ_{x} and ξ_{d}, or the pricing kernel Λ_{t} are not uniquely determined. For example, suppose we specify μ_{r}. There are potentially infinitely many pairs of r^{f} and $\xi=\left(\xi_{x}, \xi_{d}\right)$ that can produce the same μ_{r}. For example, one (trivial) choice of ξ is $\xi=(0,0)$ corresponding to risk neutrality, and the stock return is the same as the risk-free rate. Whereas Proposition 2.1 shows that specifying $\mu_{r}, \sigma_{r x}$, or f completely determines the return process, the result from Proposition A. 1 implies that a single choice of $\mu_{r}, \sigma_{r x}$, or f does not necessarily determine the pricing kernel.

B Multivariate State Variables

Suppose that there are K state variables, so that $x=\left(x_{1}, \ldots, x_{K}\right)^{\top}$ represents a $K \times 1$ vector of diffusion processes. We let x follow the diffusion process in equation (1), where $\mu_{x}(\cdot)$ is a vector function of x and $\sigma_{x}(\cdot)$ is a matrix function of x. Similarly, dividend growth satisfies equation (2) where the scalars $\mu_{d}(\cdot), \sigma_{d}(\cdot)$ are potentially functions of x. For expositional simplicity, we assume that $\sigma_{d x}=0$ and denote the scalar price-dividend ratio by $P / D=f(x)$.

Suppose that the return R_{t} satisfies the following diffusion equation:

$$
\begin{align*}
d R_{t} & =\mu_{r}\left(x_{t}\right) d t+\sigma_{r x}\left(x_{t}\right) d B_{t}^{x}+\sigma_{r d}\left(x_{t}\right) d B_{t}^{d} \\
& =\mu_{r}\left(x_{t}\right) d t+\sum_{i=1}^{K} \sigma_{r x_{i}}\left(x_{t}\right) d B_{t}^{x_{i}}+\sigma_{r d}\left(x_{t}\right) d B_{t}^{d} \tag{B-1}
\end{align*}
$$

where $\mu_{r}(\cdot)$ is a scalar function of $x, \sigma_{r x}(\cdot)$ is a matrix function of $x, \sigma_{r x_{i}}$ represents the i th row of $\sigma_{r x}$, and the vector of Brownian motions $d B_{t}^{x}$ is partitioned as $d B_{t}^{x}=\left(d B_{t}^{x_{1}} \ldots d B_{t}^{x_{K}}\right)^{\top}$. From the definition of the return $d R_{t}=d f_{t} / f_{t}+d D_{t} / D_{t}+1 / f_{t} d t$, the diffusion term of the return is given by:

$$
\begin{equation*}
\left(\frac{\partial \ln f}{\partial x}\right)^{\top} \sigma_{r x} d B_{t}^{x}+\sigma_{d} d B_{t}^{d} . \tag{B-2}
\end{equation*}
$$

Thus, in order for $\sigma_{r x}$ to represent the diffusion coefficients of a return, we must have:

$$
\begin{equation*}
\sigma_{r x}=\left(\frac{\partial \ln f}{\partial x}\right)^{\top} \sigma_{x} \tag{B-3}
\end{equation*}
$$

or, equivalently:

$$
\sigma_{r x_{i}}=\sum_{j=1}^{K} \frac{\partial \ln f}{\partial x_{j}}\left(\sigma_{x}\right)_{j i},
$$

where $\left(\sigma_{x}\right)_{j i}$ is the element of σ_{x} in the j th row and i th column. From equation (B-3), there must be a function f such that:

$$
\begin{equation*}
\frac{\partial \ln f}{\partial x}=\left(\sigma_{r x} \sigma_{x}^{-1}\right)^{\top} . \tag{B-4}
\end{equation*}
$$

The necessary and sufficient condition for this is:

Assumption B. 1 The diffusion coefficients σ_{x} and $\sigma_{r x}$ satisfy the integrability condition:

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}}\left(\sigma_{r x} \sigma_{x}^{-1}\right)_{i}=\frac{\partial}{\partial x_{i}}\left(\sigma_{r x} \sigma_{x}^{-1}\right)_{j} . \tag{B-5}
\end{equation*}
$$

Note that unlike the univariate case, we cannot arbitrarily specify the diffusion coefficients $\sigma_{r x}$ of the return. If $\sigma_{r x}$ does not satisfy the integrability condition, then equation (B-1) cannot represent a return implied from a pricing function. The multivariate version of equations (8) and (11) in Proposition 2.1 are:

Proposition B. 1 Suppose that the return R_{t} follows the diffusion equation ($B-1$) and that diffusion ratio $\sigma_{r x} \sigma_{x}^{-1}$ satisfies the integrability condition Assumption B.1. Then, the price-dividend ratio and the expected return are determined up to integration constant.

Proof: From the integrability condition (B-5), it follows from elementary calculus that there exists a function f that satisfies:

$$
\begin{equation*}
d \ln f=\sigma_{r x} \sigma_{x}^{-1} d x \tag{B-6}
\end{equation*}
$$

Equation (B-6) is the multivariate version of equation (11). The function f is the dividend yield, and it is unique up to a multiplicative constant (since $\ln f$ is determined up to an additive constant). The expected return is then determined by:

$$
\begin{equation*}
\mu_{r}(x)=\frac{\mu_{x}^{\top} f^{\prime}+\frac{1}{2} f^{\prime \prime \top} \sigma_{x} \sigma_{x}^{\top} f^{\prime \prime}+1}{f}+\mu_{d}+\frac{1}{2} \sigma_{d}^{2} . \tag{B-7}
\end{equation*}
$$

Equation (B-7) is the multivariate version of equation (8).

The integrability condition in Assumption B. 1 imposes strong restrictions on multivariate stochastic volatility processes. For example, the diffusion process

$$
\sqrt{v_{1}} d B_{t}^{1}+v_{1} \sqrt{v_{2}} d B_{t}^{2}
$$

where v_{1} and v_{2} are stochastic processes, cannot represent the return diffusion process of a valid pricing function because it violates the condition (B-5).

