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A Relation of Proposition 2.1 to Pricing Kernel Formulations

By definition, given the dividend processDt, the price of the stock is given by:

Pt = Et

[∫ ∞

t

ΛsDs ds

]
, (A-1)

under the pricing kernel processΛt, together with a transversality assumption. We assume that

the pricing kernel follows:

dΛt

Λt

= −rf (xt)dt− ξx(xt)dBx
t − ξd(xt)dBd

t , (A-2)

whererf (·) is the risk-free rate process, andξx andξd are prices of risk corresponding to shocks

to the state variablext and dividend growth, respectively. Using equation (A-1), we can express

the price-dividend ratio as:

Pt

Dt

= Et

[∫ ∞

t

exp

(
−

∫ s

t

(rf +
1

2
(ξ2

x + ξ2
d)) du + ξx dBx

u + ξd dBd
u

)

× exp

(∫ s

t

µddu + σddBd
u

)
ds

]
,

assuming thatσdx = 0 for simplicity. This can be equivalently written as:

Pt

Dt

= EQ
t

[∫ ∞

t

exp

(
−

∫ s

t

(rf − µd − 1

2
(σd − ξd)

2) du

)
ds

]
, (A-3)

where the Radon-Nikodym derivative defining the risk-neutral measureQ is given by:

dQ

dP
= exp

(
−

∫ s

t

1

2
(ξ2

x + (σd − ξd)
2) du− ξx dBx

u − (σd − ξd)dBd
u

)
. (A-4)

Note that equation (A-3) is a functionf(·) of x.

We describe how a particular choice of a return processdRt, together with assumptions on

dividends, places restrictions on the underlying pricing kernel processdΛt through the following

proposition:

Proposition A.1 Suppose the state of the economy is described byxt, which follows equation

(1), and a stock is a claim to the dividendsDt that are described by equation (2) withσdx = 0.

If the stock return follows equation (8) and the pricing kernel process follows equation (A-2),

then the price-dividend ratioPt/Dt = f(xt) satisfies the following relation:

(µx − ξxσx)f
′ +

1

2
σ2

xf
′′ − (rf − µd − 1

2
σ2

d + ξdσd)f = −1, (A-5)
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which determines the price-dividend ratiof . This implies that the expected returnµr(·) and

volatility σrx(·) of the return are given by:

µr = rf + ξxσx(ln f)′ + ξdσd,

σrx = σx(ln f)′ (A-6)

Proof: Equation (A-5) is the standard Feynman-Kac pricing equation. Once the price-dividend

ratiof is obtained from solving equation (A-5), we can derive equation (A-6) by equating terms

from the drift term ofdRt and the diffusion term ondBx
t in equation (8).¥

Proposition A.1 states that, given the dividend stream, the pricing kernel completely deter-

mines the price-dividend ratiof , the expected return of the stockµr, and the volatility of the

stockσrx. However, if we specify the price of the stock, the expected return, or the volatility of

the stock (each one being sufficient to determine the other two from Proposition 2.1), the short

raterf , the prices of riskξx andξd, or the pricing kernelΛt are not uniquely determined. For ex-

ample, suppose we specifyµr. There are potentially infinitely many pairs ofrf andξ = (ξx, ξd)

that can produce the sameµr. For example, one (trivial) choice ofξ is ξ = (0, 0) corresponding

to risk neutrality, and the stock return is the same as the risk-free rate. Whereas Proposition 2.1

shows that specifyingµr, σrx, or f completely determines the return process, the result from

Proposition A.1 implies that a single choice ofµr, σrx, or f does not necessarily determine the

pricing kernel.

B Multivariate State Variables

Suppose that there areK state variables, so thatx = (x1, . . . , xK)> represents aK×1 vector of

diffusion processes. We letx follow the diffusion process in equation (1), whereµx(·) is a vector

function ofx andσx(·) is a matrix function ofx. Similarly, dividend growth satisfies equation

(2) where the scalarsµd(·), σd(·) are potentially functions ofx. For expositional simplicity, we

assume thatσdx = 0 and denote the scalar price-dividend ratio byP/D = f(x).

Suppose that the returnRt satisfies the following diffusion equation:

dRt = µr(xt)dt + σrx(xt)dBx
t + σrd(xt)dBd

t

= µr(xt)dt +
K∑

i=1

σrxi
(xt)dBxi

t + σrd(xt)dBd
t , (B-1)
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whereµr(·) is a scalar function ofx, σrx(·) is a matrix function ofx, σrxi
represents theith row

of σrx, and the vector of Brownian motionsdBx
t is partitioned asdBx

t = (dBx1
t . . . dBxK

t )>.

From the definition of the returndRt = dft/ft + dDt/Dt + 1/ftdt, the diffusion term of the

return is given by: (
∂ ln f

∂x

)>
σrxdBx

t + σddBd
t . (B-2)

Thus, in order forσrx to represent the diffusion coefficients of a return, we must have:

σrx =

(
∂ ln f

∂x

)>
σx, (B-3)

or, equivalently:

σrxi
=

K∑
j=1

∂ ln f

∂xj

(σx)ji,

where(σx)ji is the element ofσx in the jth row andith column. From equation (B-3), there

must be a functionf such that:
∂ ln f

∂x
= (σrxσ

−1
x )>. (B-4)

The necessary and sufficient condition for this is:

Assumption B.1 The diffusion coefficientsσx andσrx satisfy the integrability condition:

∂

∂xj

(σrxσ
−1
x )i =

∂

∂xi

(σrxσ
−1
x )j. (B-5)

Note that unlike the univariate case, we cannot arbitrarily specify the diffusion coefficients

σrx of the return. Ifσrx does not satisfy the integrability condition, then equation (B-1) cannot

represent a return implied from a pricing function. The multivariate version of equations (8)

and (11) in Proposition 2.1 are:

Proposition B.1 Suppose that the returnRt follows the diffusion equation (B-1) and that diffu-

sion ratioσrxσ
−1
x satisfies the integrability condition Assumption B.1. Then, the price-dividend

ratio and the expected return are determined up to integration constant.

Proof: From the integrability condition (B-5), it follows from elementary calculus that there

exists a functionf that satisfies:

d ln f = σrxσ
−1
x dx. (B-6)
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Equation (B-6) is the multivariate version of equation (11). The functionf is the dividend

yield, and it is unique up to a multiplicative constant (sinceln f is determined up to an additive

constant). The expected return is then determined by:

µr(x) =
µ>x f ′ + 1

2
f
′′>σxσ

>
x f ′′ + 1

f
+ µd +

1

2
σ2

d. (B-7)

Equation (B-7) is the multivariate version of equation (8).¥

The integrability condition in Assumption B.1 imposes strong restrictions on multivariate

stochastic volatility processes. For example, the diffusion process

√
v1dB1

t + v1

√
v2dB2

t ,

wherev1 andv2 are stochastic processes, cannot represent the return diffusion process of a valid

pricing function because it violates the condition (B-5).
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