
Appendix B: Tables and Figures



Notes: See Figure 1a. Figure plots estimated response to joint one-time standard-deviation shocks. Panels A and B exclude foreign patenting, which has a 

negative own effect, while Panels C and D include it.

Appendix Figure 2: Combined response to joint one standard-deviation shocks

A. Value-added, without foreign patenting B. Employment, without foreign patenting

C. Value-added, with foreign patenting D. Employment, with foreign patenting
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Notes: See Figures 1a and Appendix Figure 2. Figure plots estimated response to joint one-time standard-deviation shocks that includes geographic effects. 

Appendix Figure 3: Combined response to joint one standard-deviation shocks with geographic effects

A. Value-added, without foreign patenting B. Employment, without foreign patenting

C. Value-added, with foreign patenting D. Employment, with foreign patenting
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Downstream 

effects t-1

Upstream 

effects t-1 Own effects t-1

Downstream 

effects t-1

Upstream 

effects t-1 Own effects t-1

(1) (2) (3) (4) (5) (6)

Δ Log real value added t-1 -0.012*** -0.014 -0.008 -0.013*** -0.015 -0.023

(0.004) (0.010) (0.084) (0.005) (0.011) (0.082)

Δ Log real value added t-2 -0.004 0.032** -0.027

(0.005) (0.015) (0.068)

Δ Log real value added t-3 -0.005 0.004 -0.018

(0.005) (0.013) (0.080)

IV Downstream effects t-1 0.638*** 0.101** 0.832** 0.640*** 0.110** 0.835**

(0.041) (0.044) (0.368) (0.041) (0.045) (0.364)

IV Upstream effects t-1 0.005 0.886*** -0.244** 0.005 0.879*** -0.237***

(0.009) (0.045) (0.076) (0.009) (0.045) (0.077)

IV Own effects t-1 -0.001 -0.008*** 0.461*** -0.001 -0.009*** 0.458***

(0.002) (0.003) (0.075) (0.002) (0.003) (0.073)

Shea's Partial R-Squared 0.361 0.514 0.224 0.360 0.509 0.222

Appendix Table 1: First-stage relationships for Chinese imports instruments

Notes: See Table 2a.

Real value-added growth, one lag Real value-added growth, three lags



Baseline 

estimation

Excluding 

own lagged 

shock

Weighting by 

1991 log value 

added

Weighting by 

1991 

employees

Adding SIC2 

fixed effects

Adding SIC3 

fixed effects

Adding SIC4 

fixed effects

Adding 

resource 

constraints

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.176*** 0.179*** 0.182*** 0.332*** 0.140*** 0.103*** 0.061*** 0.173***

(0.026) (0.026) (0.028) (0.065) (0.026) (0.024) (0.021) (0.027)

Downstream effects t-1 -0.140** -0.067 -0.147** -0.186** -0.025 0.084 0.128 -0.176

(0.059) (0.055) (0.060) (0.091) (0.076) (0.076) (0.098) (0.067)

Upstream effects t-1 0.054*** 0.048*** 0.055*** 0.045* 0.034* 0.033 0.031 0.098***

(0.019) (0.019) (0.019) (0.024) (0.020) (0.026) (0.035) (0.037)

Own effects t-1 0.021*** 0.020*** 0.018 0.007 0.004 0.002 0.018***

(0.006) (0.006) (0.011) (0.006) (0.007) (0.010) (0.006)

Observations 6560 6560 6560 6560 6560 6560 6560 6560

p-value: Upstream=Own 0.068 0.053 0.143 0.154 0.272 0.460 0.027

Appendix Table 2a: Robustness checks on China trade shock analysis using real shipments growth

Notes: See Table 2a.

Δ Log real shipments



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Downstream effects t-1 -0.146* -0.116 -0.086 -0.056 -0.026 0.004 0.034 0.065 0.095 0.125 0.155*

(0.087) (0.083) (0.080) (0.078) (0.076) (0.074) (0.074) (0.074) (0.075) (0.077) (0.080)

Upstream effects t-1 0.077*** 0.073*** 0.069*** 0.064*** 0.060*** 0.056*** 0.052*** 0.048*** 0.043** 0.039** 0.035*

(0.024) (0.022) (0.021) (0.020) (0.019) (0.019) (0.018) (0.018) (0.018) (0.018) (0.018)

Own effects t-1 0.034*** 0.033*** 0.033*** 0.032*** 0.032*** 0.031*** 0.031*** 0.030*** 0.030*** 0.029*** 0.029***

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.010) (0.010)

Downstream effects t-1 -0.073 -0.062 -0.050 -0.038 -0.027 -0.015 -0.003 0.008 0.020 0.032 0.043

(0.046) (0.042) (0.039) (0.037) (0.035) (0.034) (0.034) (0.035) (0.036) (0.039) (0.042)

Upstream effects t-1 0.056*** 0.052*** 0.047*** 0.042*** 0.038*** 0.033*** 0.028*** 0.024** 0.019** 0.014 0.010

(0.018) (0.017) (0.016) (0.014) (0.013) (0.012) (0.011) (0.010) (0.009) (0.009) (0.009)

Own effects t-1 0.026*** 0.024*** 0.022*** 0.020*** 0.018*** 0.016*** 0.014*** 0.012*** 0.010*** 0.008** 0.006

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

B. Δ Log employment

Notes: See Table 2a. Estimations impose the psi parameter for the lagged dependent variable dependence given in the column header.

Appendix Table 2b: Variations in psi parameter for China trade shock analysis

A. Δ Log real value added



Baseline annual 

analysis

Using two-year 

periods

Using three-

year periods

Using four-year 

periods

Using five-year 

periods

(1) (2) (3) (4) (5)

Δ Dependent variable t-1 0.019 0.085** 0.092* 0.027 0.072

(0.025) (0.037) (0.047) (0.056) (0.076)

Downstream effects t-1 -0.140 -0.323*** -0.417** -1.549*** -1.092

(0.086) (0.120) (0.198) (0.348) (0.671)

Upstream effects t-1 0.076*** 0.089*** 0.149*** 0.292*** 0.719***

(0.024) (0.024) (0.040) (0.067) (0.175)

Own effects t-1 0.034*** 0.041*** 0.087*** 0.118*** 0.153***

(0.009) (0.010) (0.017) (0.029) (0.054)

Observations 6560 3080 1920 1152 768

p-value: Upstream=Own 0.071 0.035 0.093 0.005 0.001

Δ Dependent variable t-1 0.149*** 0.242*** 0.284*** 0.266*** 0.297***

(0.020) (0.028) (0.041) (0.047) (0.058)

Downstream effects t-1 -0.056 -0.041 -0.207*** -0.055 0.685*

(0.040) (0.058) (0.076) (0.221) (0.408)

Upstream effects t-1 0.049*** 0.063*** 0.100*** 0.215*** 0.655***

(0.016) (0.019) (0.027) (0.060) (0.160)

Own effects t-1 0.023*** 0.036*** 0.067*** 0.102*** 0.111***

(0.005) (0.008) (0.012) (0.027) (0.039)

Observations 6560 3080 1920 1152 768

p-value: Upstream=Own 0.086 0.138 0.172 0.066 0.001

Appendix Table 2c: Longer changes on China trade shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 2a. All sample periods start with 1991 and extend as far as data allow. For example, Column 5 effectively 

considers 1996-2001 and 2001-2006, with lags extending back to 1991-1996. 



Baseline 

estimation

Excluding 

own lagged 

shock

Weighting by 

1991 log value 

added

Weighting by 

1991 

employees

Adding SIC2 

fixed effects

Adding SIC3 

fixed effects

Adding SIC4 

fixed effects

Adding 

resource 

constraints

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.178*** 0.178*** 0.184*** 0.334*** 0.138*** 0.101*** 0.058*** 0.178***

(0.026) (0.026) (0.027) (0.061) (0.026) (0.026) (0.021) (0.026)

Downstream effects t-1 -0.002 0.019 -0.003 -0.002 -0.022 0.011 -0.025 0.000

(0.018) (0.016) (0.017) (0.009) (0.018) (0.019) (0.046) (0.018)

Upstream effects t-1 0.022*** 0.022*** 0.021*** 0.024** 0.013* 0.024* 0.055*** 0.017*

(0.008) (0.008) (0.008) (0.010) (0.007) (0.013) (0.019) (0.010)

Own effects t-1 0.005* 0.004* 0.001 0.003 0.007 0.010 0.005*

(0.003) (0.003) (0.001) (0.003) (0.005) (0.010) (0.003)

Observations 6560 6560 6560 6560 6560 6560 6560 6560

p-value: Upstream=Own 0.063 0.065 0.019 0.304 0.211 0.055 0.259

Notes: See Table 3a.

Appendix Table 3a: Robustness checks on federal spending shock analysis using real shipments growth

Δ Log real shipments



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Downstream effects t-1 0.017 0.016 0.014 0.012 0.010 0.009 0.007 0.005 0.004 0.002 0.000

(0.022) (0.020) (0.018) (0.016) (0.014) (0.012) (0.011) (0.009) (0.008) (0.008) (0.008)

Upstream effects t-1 0.022** 0.020** 0.018** 0.017** 0.015** 0.013** 0.011** 0.009** 0.007** 0.005* 0.004

(0.010) (0.009) (0.008) (0.007) (0.006) (0.005) (0.005) (0.004) (0.004) (0.003) (0.003)

Own effects t-1 0.004 0.004 0.003 0.003 0.003 0.003 0.002* 0.002** 0.002** 0.001** 0.001

(0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Downstream effects t-1 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 0.000 -0.001

(0.016) (0.015) (0.014) (0.013) (0.012) (0.011) (0.010) (0.009) (0.008) (0.008) (0.007)

Upstream effects t-1 0.011 0.010* 0.009* 0.009* 0.008* 0.007* 0.007* 0.006* 0.005* 0.004* 0.004

(0.007) (0.006) (0.006) (0.005) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003)

Own effects t-1 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002* 0.002** 0.002***

(0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

B. Δ Log employment

Notes: See Table 3a. Estimations impose the psi parameter for the lagged dependent variable dependence given in the column header.

Appendix Table 3b: Variations in psi parameter for federal spending shock analysis

A. Δ Log real value added



Baseline annual 

analysis

Using two-year 

periods

Using three-

year periods

Using four-year 

periods

Using five-year 

periods

(1) (2) (3) (4) (5)

Δ Dependent variable t-1 0.019 0.094** 0.114** 0.083 0.138*

(0.025) (0.037) (0.048) (0.059) (0.072)

Downstream effects t-1 0.017 0.031 0.094* 0.197** 0.122

(0.021) (0.033) (0.054) (0.095) (0.130)

Upstream effects t-1 0.022** 0.020 0.037* 0.056 -0.009

(0.009) (0.014) (0.021) (0.039) (0.051)

Own effects t-1 0.004 0.013*** 0.023** 0.011 0.017

(0.003) (0.005) (0.010) (0.016) (0.016)

Observations 6560 3080 1920 1152 768

p-value: Upstream=Own 0.076 0.634 0.569 0.286 0.657

Δ Dependent variable t-1 0.158*** 0.264*** 0.332*** 0.346*** 0.379***

(0.021) (0.027) (0.040) (0.047) (0.054)

Downstream effects t-1 0.007 0.029 0.051 0.044 0.176*

(0.015) (0.021) (0.032) (0.044) (0.102)

Upstream effects t-1 0.010* 0.018** 0.040*** 0.063*** -0.025

(0.006) (0.008) (0.013) (0.023) (0.036)

Own effects t-1 0.003 0.006* 0.015*** 0.022*** 0.036***

(0.003) (0.004) (0.006) (0.008) (0.013)

Observations 6560 3080 1920 1152 768

p-value: Upstream=Own 0.321 0.214 0.088 0.103 0.144

Appendix Table 3c: Longer changes on federal spending shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 3a. 



Baseline 

estimation

Excluding 

own lagged 

shock

Weighting by 

1991 log value 

added

Weighting by 

1991 

employees

Adding SIC2 

fixed effects

Adding SIC3 

fixed effects

Adding SIC4 

fixed effects

(1) (2) (3) (4) (5) (6) (7)

Δ Dependent variable t-1 0.226*** 0.164*** 0.231*** 0.307*** 0.168*** 0.122*** 0.088***

(0.026) (0.024) (0.026) (0.045) (0.026) (0.027) (0.027)

Downstream effects t-1 0.054*** 0.048*** 0.055*** 0.065*** 0.037** 0.026* 0.026*

(0.017) (0.017) (0.017) (0.023) (0.016) (0.014) (0.014)

Upstream effects t-1 0.012 0.010 0.013 0.039*** 0.008 0.004 0.006

(0.010) (0.010) (0.010) (0.012) (0.009) (0.011) (0.011)

Own effects t-1 -0.012*** -0.011*** -0.004 -0.007* -0.005 -0.006*

(0.004) (0.004) (0.009) (0.004) (0.004) (0.003)

Observations 6560 6560 6560 6560 6560 6560 6560

p-value: Downstream=Own 0.000 0.000 0.034 0.014 0.134 0.008

Appendix Table 4a: Robustness checks on TFP shock analysis using real shipments growth

Δ Log real shipments

Notes: See Table 4a.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Downstream effects t-1 0.059*** 0.054*** 0.050** 0.045** 0.040* 0.035 0.031 0.026 0.021 0.017 0.012

(0.020) (0.020) (0.020) (0.021) (0.021) (0.022) (0.022) (0.023) (0.024) (0.024) (0.025)

Upstream effects t-1 0.023** 0.021* 0.019* 0.017 0.015 0.013 0.011 0.008 0.006 0.004 0.002

(0.011) (0.011) (0.011) (0.011) (0.012) (0.012) (0.012) (0.013) (0.013) (0.013) (0.014)

Own effects t-1 0.002 -0.011*** -0.023*** -0.035*** -0.047*** -0.059*** -0.072*** -0.084*** -0.096*** -0.108*** -0.120***

(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006)

Downstream effects t-1 0.018* 0.017* 0.016* 0.015 0.013 0.012 0.011 0.010 0.009 0.007 0.006

(0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.010) (0.010) (0.011) (0.011)

Upstream effects t-1 0.010 0.009 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.003 0.002

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.008) (0.008)

Own effects t-1 0.010*** 0.007*** 0.005*** 0.003 0.000 -0.002 -0.004** -0.007*** -0.009*** -0.011*** -0.014***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)

Appendix Table 4b: Variations in psi parameter for TFP shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 4a. Estimations impose the psi parameter for the lagged dependent variable dependence given in the column header.



Baseline annual 

analysis

Using two-year 

periods

Using three-

year periods

Using four-year 

periods

Using five-year 

periods

(1) (2) (3) (4) (5)

Δ Dependent variable t-1 -0.024 0.067 0.157*** 0.123* 0.125*

(0.040) (0.047) (0.056) (0.069) (0.068)

Downstream effects t-1 0.060*** 0.189*** 0.118* 0.253*** 0.269**

(0.020) (0.047) (0.067) (0.089) (0.104)

Upstream effects t-1 0.024** 0.033 0.041 -0.055 -0.077

(0.011) (0.021) (0.036) (0.050) (0.056)

Own effects t-1 0.004 -0.004 -0.027 -0.032 -0.016

(0.007) (0.013) (0.022) (0.031) (0.037)

Observations 6560 3080 1920 1152 768

p-value: Downstream=Own 0.005 0.000 0.092 0.006 0.025

Δ Dependent variable t-1 0.141*** 0.252*** 0.336*** 0.349*** 0.363***

(0.021) (0.028) (0.042) (0.047) (0.054)

Downstream effects t-1 0.016* 0.015 -0.016 0.032 0.053

(0.009) (0.022) (0.027) (0.036) (0.053)

Upstream effects t-1 0.009 0.017 0.021 -0.069** -0.099**

(0.006) (0.010) (0.018) (0.033) (0.039)

Own effects t-1 0.006*** 0.006 -0.004 -0.011 -0.016

(0.002) (0.004) (0.006) (0.008) (0.014)

Observations 6560 3080 1920 1152 768

p-value: Downstream=Own 0.041 0.485 0.690 0.169 0.217

Appendix Table 4c: Longer changes on TFP shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 4a. 



Baseline 

estimation

Excluding 

own lagged 

shock

Weighting by 

1991 log value 

added

Weighting by 

1991 

employees

Adding SIC2 

fixed effects

Adding SIC3 

fixed effects

Adding SIC4 

fixed effects

(1) (2) (3) (4) (5) (6) (7)

Δ Dependent variable t-1 0.181*** 0.181*** 0.187*** 0.342*** 0.139*** 0.103*** 0.060***

(0.026) (0.026) (0.028) (0.063) (0.027) (0.025) (0.021)

Downstream effects t-1 0.022*** 0.019** 0.022*** 0.025 0.019** 0.017** 0.018**

(0.008) (0.008) (0.008) (0.019) (0.008) (0.008) (0.008)

Upstream effects t-1 0.002 0.002 0.002 0.007 0.002 0.002 0.002

(0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.004)

Own effects t-1 -0.003 -0.003 0.004 -0.001 -0.001 -0.002

(0.003) (0.003) (0.006) (0.003) (0.003) (0.003)

Observations 6543 6543 6543 6543 6543 6543 6543

p-value: Downstream=Own 0.015 0.021 0.683 0.039 0.057 0.025

Appendix Table 5a: Robustness checks on foreign patent shock analysis using real shipments growth

Δ Log real shipments

Notes: See Table 5a.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Downstream effects t-1 0.043*** 0.041*** 0.039*** 0.037*** 0.036*** 0.034*** 0.032** 0.030** 0.028** 0.026* 0.024

(0.011) (0.011) (0.011) (0.011) (0.012) (0.012) (0.012) (0.013) (0.013) (0.014) (0.015)

Upstream effects t-1 -0.000 0.000 0.001 0.001 0.002 0.003 0.003 0.004 0.005 0.005 0.006

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.007)

Own effects t-1 -0.006 -0.005 -0.005 -0.004 -0.003 -0.002 -0.002 -0.001 -0.000 0.001 0.001

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) (0.006)

Downstream effects t-1 0.018*** 0.018*** 0.018*** 0.018*** 0.018*** 0.018*** 0.018*** 0.018** 0.018** 0.018** 0.018**

(0.006) (0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008)

Upstream effects t-1 -0.002 -0.001 -0.001 0.000 0.001 0.001 0.002 0.003 0.003 0.004 0.004

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Own effects t-1 -0.009*** -0.008*** -0.007*** -0.006** -0.006** -0.005 -0.004 -0.003 -0.002 -0.001 -0.000

(0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004)

B. Δ Log employment

Notes: See Table 5a. Estimations impose the psi parameter for the lagged dependent variable dependence given in the column header.

Appendix Table 5b: Variations in psi parameter for foreign patenting shock analysis

A. Δ Log real value added



Baseline annual 

analysis

Using two-year 

periods

Using three-

year periods

Using four-year 

periods

Using five-year 

periods

(1) (2) (3) (4) (5)

Δ Dependent variable t-1 0.020 0.099*** 0.113** 0.075 0.133*

(0.025) (0.038) (0.050) (0.060) (0.071)

Downstream effects t-1 0.043*** -0.032 0.040 0.088 -0.012

(0.011) (0.023) (0.034) (0.064) (0.067)

Upstream effects t-1 -0.000 -0.020** -0.013 0.004 0.014

(0.005) (0.009) (0.012) (0.018) (0.021)

Own effects t-1 -0.006 0.012 -0.015 0.044* 0.004

(0.004) (0.011) (0.017) (0.023) (0.033)

Observations 6543 3072 1915 1149 766

p-value: Downstream=Own 0.000 0.051 0.144 0.902 0.592

Δ Dependent variable t-1 0.159*** 0.265*** 0.330*** 0.324*** 0.347***

(0.021) (0.028) (0.041) (0.046) (0.053)

Downstream effects t-1 0.018*** 0.005 0.046** 0.104*** 0.039

(0.006) (0.012) (0.023) (0.037) (0.048)

Upstream effects t-1 -0.001 -0.011** -0.009 0.005 0.006

(0.003) (0.005) (0.008) (0.012) (0.015)

Own effects t-1 -0.008*** -0.002 -0.022** -0.006 -0.006

(0.003) (0.007) (0.010) (0.015) (0.030)

Observations 6543 3072 1915 1149 766

p-value: Downstream=Own 0.001 0.890 0.030 0.055 0.616

Appendix Table 5c: Longer changes on foreign patent shock analysis

A. Δ Log real value added

B. Δ Log employment

Notes: See Table 5a.



Δ Log real 

value added

Δ Log nominal 

value added

Δ Log real 

shipments

Δ Log nominal 

shipments

Δ Log real 

value added

Δ Log nominal 

value added

Δ Log real 

shipments

Δ Log nominal 

shipments

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.019 0.034* 0.176*** 0.201*** 0.019 0.034* 0.178*** 0.201***

(0.025) (0.021) (0.026) (0.020) (0.025) (0.020) (0.026) (0.019)

Downstream effects t-1 -0.140 -0.013 -0.140** -0.025 0.017 0.014 -0.002 -0.004

(0.086) (0.073) (0.059) (0.050) (0.021) (0.019) (0.018) (0.016)

Upstream effects t-1 0.076*** 0.077*** 0.054*** 0.056*** 0.022** 0.020** 0.022*** 0.019**

(0.024) (0.025) (0.019) (0.021) (0.009) (0.009) (0.008) (0.008)

Own effects t-1 0.034*** 0.044*** 0.021*** 0.029*** 0.004 0.003 0.005* 0.004

(0.009) (0.011) (0.006) (0.007) (0.003) (0.003) (0.003) (0.002)

Observations 6560 6560 6560 6560 6560 6560 6560 6560

Δ Log real 

value added

Δ Log nominal 

value added

Δ Log real 

shipments

Δ Log nominal 

shipments

Δ Log real 

value added

Δ Log nominal 

value added

Δ Log real 

shipments

Δ Log nominal 

shipments

(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 -0.024 0.058** 0.226*** 0.246*** 0.020 0.032 0.181*** 0.201***

(0.040) (0.029) (0.026) (0.021) (0.025) (0.020) (0.026) (0.020)

Downstream effects t-1 0.060*** 0.018 0.054*** 0.026** 0.043*** 0.037*** 0.022*** 0.018**

(0.020) (0.016) (0.017) (0.012) (0.011) (0.010) (0.008) (0.007)

Upstream effects t-1 0.024** 0.039*** 0.012 0.031*** -0.000 -0.012*** 0.002 -0.008**

(0.011) (0.011) (0.010) (0.008) (0.005) (0.005) (0.004) (0.003)

Own effects t-1 0.004 -0.008** -0.012*** -0.013*** -0.006 -0.011*** -0.003 -0.007**

(0.007) (0.004) (0.004) (0.003) (0.004) (0.004) (0.003) (0.003)

Observations 6560 6560 6560 6560 6543 6543 6543 6543

TFP shocks Foreign patenting shocks

Appendix Table 6, continued

Appendix Table 6: Comparison of alternatives to real value added growth

Notes: See Tables 2a-5a.

China trade shocks Federal spending shocks



(1) (2) (3) (4) (5) (6) (7) (8)

Include 3 lags of DV Yes Yes Yes Yes Yes Yes Yes Yes

Include 3 lags of own shock Yes Yes Yes Yes

Include 3 lags of network shocks Yes Yes Yes Yes

Table 2a: Imports

Downstream effects -0.124 -0.121 -0.191* -0.225** -0.044 -0.040 -0.034 -0.065*

Upstream effects 0.076*** 0.079*** 0.069*** 0.074*** 0.039*** 0.045*** 0.038*** 0.043***

Own effects 0.031*** 0.042*** 0.030*** 0.046*** 0.018*** 0.029*** 0.018*** 0.032***

Table 3a: Federal Spending

Downstream effects 0.023 0.023 0.042* 0.036* 0.013 0.013 0.015 0.015

Upstream effects 0.020** 0.020** 0.018** 0.018** 0.011** 0.011** 0.013*** 0.013***

Own effects 0.008** 0.010*** 0.008** 0.009*** 0.006*** 0.007*** 0.006*** 0.006***

Table 4a: TFP

Downstream effects 0.047** 0.048** 0.085** 0.087** 0.011 0.012 -0.005 -0.003

Upstream effects 0.020* 0.019* 0.017 0.017 0.008 0.008 0.013 0.014*

Own effects 0.007 -0.001 0.007 -0.002 0.007*** 0.005* 0.007*** 0.006*

Table 5a: Foreign Patent

Downstream effects 0.044*** 0.043*** 0.037* 0.030 0.018*** 0.018*** 0.022** 0.021**

Upstream effects 0.000 0.001 -0.014** -0.014** -0.000 0.000 -0.009** -0.009**

Own effects -0.007* 0.001 -0.007* 0.003 -0.006** -0.004 -0.006** -0.005

Appendix Table 7: Summed coefficients over deeper lags

Δ Log real value added Δ Log employment

Notes: Table documents the sum of coefficients across variations of lag structure. Columns 1 and 5 are baseline specifications from respective 

tables. 



(1) (2) (3) (4)

Δ Dependent variable t-1 -0.040 -0.048 0.126*** 0.105***

(0.041) (0.041) (0.020) (0.020)

Δ Dependent variable t-2 0.041* 0.108***

(0.022) (0.020)

Δ Dependent variable t-3 0.033 0.090***

(0.021) (0.016)

Trade: Downstream effects t-1 -0.042 -0.025 -0.006 0.017

(0.083) (0.081) (0.043) (0.040)

Upstream effects t-1 0.106*** 0.107*** 0.065*** 0.054***

(0.030) (0.031) (0.020) (0.020)

Own effects t-1 0.030*** 0.028*** 0.022*** 0.016***

(0.009) (0.009) (0.005) (0.004)

Federal: Downstream effects t-1 -0.003 0.001 -0.006 0.003

(0.024) (0.025) (0.017) (0.014)

Upstream effects t-1 0.036** 0.041*** 0.021** 0.023***

(0.014) (0.014) (0.009) (0.008)

Own effects t-1 0.001 0.004 0.001 0.005*

(0.003) (0.004) (0.003) (0.003)

TFP: Downstream effects t-1 0.061*** 0.049** 0.019* 0.013

(0.020) (0.020) (0.010) (0.010)

Upstream effects t-1 0.029** 0.027** 0.013* 0.011

(0.013) (0.013) (0.007) (0.008)

Own effects t-1 0.007 0.009 0.007*** 0.008***

(0.007) (0.007) (0.002) (0.002)

Observations 6560 5776 6560 5776

Appendix Table 8: Joint analysis without foreign patenting shocks

Δ Log real value added Δ Log employment

Notes: See Table 7.



Baseline 

estimation

Excluding 

own lagged 

shock

Weighting by 

1991 log value 

added

Weighting by 

1991 

employees

Adding SIC2 

fixed effects

Adding SIC3 

fixed effects

Adding SIC4 

fixed effects

(1) (2) (3) (4) (5) (6) (7)

Δ Dependent variable t-1 -0.028 0.009 -0.027 -0.065 -0.074* -0.120*** -0.139***

(0.040) (0.023) (0.040) (0.070) (0.039) (0.038) (0.038)

Trade: Geographic effects t-1 0.125*** 0.121*** 0.121*** 0.068** 0.090*** 0.074** 0.047

(0.035) (0.034) (0.035) (0.029) (0.032) (0.030) (0.031)

Own effects t-1 0.032*** 0.031*** 0.020* 0.020** 0.020** 0.023*

(0.009) (0.009) (0.011) (0.009) (0.010) (0.013)

Federal: Geographic effects t-1 0.112*** 0.112*** 0.110*** 0.063** 0.086*** 0.075*** 0.012

(0.032) (0.030) (0.032) (0.026) (0.029) (0.028) (0.030)

Own effects t-1 0.001 0.000 -0.001 -0.001 0.004 0.014

(0.004) (0.004) (0.003) (0.004) (0.005) (0.009)

TFP: Geographic effects t-1 0.032*** 0.032*** 0.030*** 0.011* 0.025*** 0.022** 0.018**

(0.010) (0.010) (0.010) (0.006) (0.010) (0.009) (0.009)

Own effects t-1 0.008 0.008 0.031** 0.011* 0.015** 0.013**

(0.006) (0.007) (0.014) (0.006) (0.006) (0.005)

Patent: Geographic effects t-1 0.005*** 0.005*** 0.005*** 0.002*** 0.005*** 0.005*** 0.004***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Own effects t-1 -0.002 -0.001 0.007 0.000 -0.000 -0.001

(0.004) (0.004) (0.006) (0.004) (0.004) (0.004)

Observations 6543 6560 6543 6543 6543 6543 6543

Appendix Table 9a: Robustness checks on joint geographic analysis

Notes: See Table 8.

A. Δ Log real value added



Baseline 

estimation

Excluding 

own lagged 

shock

Weighting by 

1991 log value 

added

Weighting by 

1991 

employees

Adding SIC2 

fixed effects

Adding SIC3 

fixed effects

Adding SIC4 

fixed effects

(1) (2) (3) (4) (5) (6) (7)

Δ Dependent variable t-1 0.130*** 0.156*** 0.135*** 0.240*** 0.081*** 0.020 -0.019

(0.021) (0.020) (0.020) (0.034) (0.021) (0.019) (0.019)

Trade: Geographic effects t-1 0.055*** 0.057*** 0.053*** 0.030** 0.027* 0.030* 0.036**

(0.018) (0.017) (0.017) (0.012) (0.015) (0.015) (0.018)

Own effects t-1 0.023*** 0.023*** 0.022*** 0.011*** 0.007* 0.004

(0.005) (0.005) (0.007) (0.004) (0.004) (0.004)

Federal: Geographic effects t-1 0.046*** 0.050*** 0.043*** 0.027*** 0.022* 0.021 0.010

(0.015) (0.014) (0.014) (0.010) (0.013) (0.013) (0.017)

Own effects t-1 0.002 0.002 0.000 0.001 0.009** 0.021***

(0.003) (0.002) (0.001) (0.003) (0.004) (0.007)

TFP: Geographic effects t-1 0.014*** 0.014*** 0.013*** 0.006** 0.008* 0.009* 0.011**

(0.005) (0.005) (0.005) (0.003) (0.005) (0.005) (0.005)

Own effects t-1 0.008*** 0.008*** 0.006*** 0.008*** 0.009*** 0.010***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Patent: Geographic effects t-1 0.001 0.001 0.001 0.001 0.001 0.001 0.000

(0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)

Own effects t-1 -0.005** -0.005** -0.002 -0.003 -0.002 -0.002

(0.003) (0.002) (0.003) (0.002) (0.002) (0.002)

Observations 6543 6560 6543 6543 6543 6543 6543

Appendix Table 9a, continued

B. Δ Log employment

Notes: See Table 8.



(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.022 0.019 0.018 0.017 -0.013 -0.024 0.021 0.020

(0.025) (0.025) (0.024) (0.024) (0.040) (0.040) (0.025) (0.025)

Trade: Geographic effects t-1 0.001 0.002

(0.007) (0.007)

Downstream effects t-1 -0.142*

(0.086)

Upstream effects t-1 0.076***

(0.024)

Own effects t-1 0.032*** 0.034***

(0.009) (0.009)

Federal: Geographic effects t-1 0.021** 0.018**

(0.009) (0.009)

Downstream effects t-1 0.005

(0.021)

Upstream effects t-1 0.018**

(0.008)

Own effects t-1 0.004 0.003

(0.003) (0.003)

TFP: Geographic effects t-1 0.005 0.003

(0.005) (0.005)

Downstream effects t-1 0.060***

(0.020)

Upstream effects t-1 0.023**

(0.011)

Own effects t-1 0.007 0.004

(0.007) (0.007)

Patent: Geographic effects t-1 0.004*** 0.003***

(0.001) (0.001)

Downstream effects t-1 0.041***

(0.011)

Upstream effects t-1 -0.001

(0.004)

Own effects t-1 -0.002 -0.006

(0.004) (0.004)

Observations 6560 6560 6560 6560 6560 6560 6543 6543

Appendix Table 9b: Geographic effects and networks analysis with single shocks

Notes: See Table 8.

Δ Log real value added



(1) (2) (3) (4) (5) (6) (7) (8)

Δ Dependent variable t-1 0.152*** 0.149*** 0.159*** 0.158*** 0.142*** 0.141*** 0.159*** 0.159***

(0.020) (0.020) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021)

Trade: Geographic effects t-1 0.004 0.004

(0.004) (0.004)

Downstream effects t-1 -0.059

(0.041)

Upstream effects t-1 0.049***

(0.016)

Own effects t-1 0.022*** 0.023***

(0.005) (0.005)

Federal: Geographic effects t-1 0.005 0.004

(0.003) (0.003)

Downstream effects t-1 0.005

(0.014)

Upstream effects t-1 0.009

(0.006)

Own effects t-1 0.003 0.003

(0.002) (0.003)

TFP: Geographic effects t-1 0.003 0.002

(0.003) (0.003)

Downstream effects t-1 0.016*

(0.009)

Upstream effects t-1 0.009

(0.006)

Own effects t-1 0.007*** 0.006***

(0.002) (0.002)

Patent: Geographic effects t-1 0.000 0.000

(0.001) (0.001)

Downstream effects t-1 0.018***

(0.006)

Upstream effects t-1 -0.001

(0.003)

Own effects t-1 -0.006** -0.008***

(0.003) (0.003)

Observations 6560 6560 6560 6560 6560 6560 6543 6543

Appendix Table 9b, continued

Δ Log employment

Notes: See Table 8.



(1) (2) (3) (4)

Δ Dependent variable t-1 -0.052 -0.055 0.103*** 0.103***

(0.041) (0.042) (0.020) (0.019)

Δ Dependent variable t-2 0.032 0.033 0.106*** 0.106***

(0.021) (0.021) (0.019) (0.019)

Δ Dependent variable t-3 0.022 0.023 0.089*** 0.088***

(0.019) (0.019) (0.016) (0.016)

Trade: Geographic effects t-1 0.193*** 0.147*** 0.074*** 0.066***

(0.044) (0.039) (0.021) (0.019)

Downstream effects t-1 -0.006 -0.027 0.021 0.012

(0.076) (0.076) (0.041) (0.041)

Upstream effects t-1 0.090*** 0.095*** 0.048** 0.049***

(0.030) (0.030) (0.019) (0.019)

Own effects t-1 0.029*** 0.031*** 0.017*** 0.017***

(0.009) (0.009) (0.004) (0.004)

Federal: Geographic effects t-1 0.178*** 0.134*** 0.063*** 0.055***

(0.040) (0.036) (0.019) (0.017)

Downstream effects t-1 -0.048* -0.041* -0.012 -0.012

(0.025) (0.025) (0.015) (0.015)

Upstream effects t-1 0.028** 0.030** 0.020** 0.020**

(0.013) (0.013) (0.008) (0.008)

Own effects t-1 0.002 0.002 0.004 0.004

(0.005) (0.004) (0.003) (0.003)

TFP: Geographic effects t-1 0.047*** 0.044*** 0.020*** 0.020***

(0.013) (0.013) (0.006) (0.006)

Downstream effects t-1 0.040** 0.043** 0.009 0.010

(0.019) (0.019) (0.010) (0.010)

Upstream effects t-1 0.015 0.019 0.006 0.007

(0.013) (0.013) (0.008) (0.008)

Own effects t-1 0.008 0.009 0.007*** 0.007***

(0.006) (0.006) (0.002) (0.002)

Patent: Geographic effects t-1 0.005*** 0.001

(0.001) (0.001)

Downstream effects t-1 0.040*** 0.016**

(0.011) (0.007)

Upstream effects t-1 0.002 0.000

(0.005) (0.003)

Own effects t-1 -0.006 -0.006**

(0.004) (0.003)

Observations 5776 5761 5776 5761

Appendix Table 9c: Joint estimates with three lags of dependent variable

Δ Log real value added Δ Log employment

Notes: See Table 2a.



1 Appendix C: Omitted Proofs and Results and Monte Carlo
Exercises

Details for Example 1

The expressions and Example 1 follow readily from equation (6) in the text or equation (A7) in
Appendix A. We provide the detailed algebra here for completeness and verification. Suppose,

for this purpose and without loss of any generality, that u(c1, c2, c3, l) = γ(l)
3∏
i=1

c
1/3
i (since in

this case preference heterogeneity does not matter). Recall that the production function for
sector i ∈ {1, 2, 3} is:

yi = ezi l
αli
i x

aij
ij . (C1)

In what follows, we denote the supplier of the focal sector i by j and the customer of i by
k (for instance, {i, j, k} = {1, 2, 3} , {i, j, k} = {2, 3, 1} , and {i, j, k} = {3, 1, 2}). With this
convention, the resource market clearing condition can be written as

yi = ci + xki.

Combining the first-order conditions of the representative household and firms to eliminate
prices, we can write

aij =
cixij
cjyi

and αli =
3cili
yi

. (C2)

Substituting this expression into (C1) we obtain

ci = eziΩijc
aij
j , (C3)

where Ωij ≡
(
αli
)αli aaijij 3−α

l
i for i = 1, 2, 3. Solving these three equations summarized in (C3)

jointly, we have
ci = Ω̃ie

δi (C4)

where
δi ≡

zi + zjaij + zcaijajk
1− aijajkaki

,

and Ω̃i is a constant. Using the production functions (C1) and optimal labor choices (C2) and
the equilibrium consumption choices (C4), we can express express yi in terms of its intermediate
input use, xij , only. Then combining these with the resource constraints we obtain

yi = Ω̃ie
δi + yke

αlkδk−zk
1−αl

k
k Γi,

where the Γi’s denote constants. Solving this system of equations gives:

yi = eδi

[
Ω̃i + Ω̃kΓk + Ω̃jΓjΓk

]
1− ΓiΓjΓk

.

Finally, taking the logs and differentiating this expression delivers the desired result:

d ln yi =
dzi + aijdzj + aijajkdzc

1− aijajkaki
for each i = 1, 2, 3.



Details for Example 2

Once again the expressions in Example 2 follow from our general results, in particular equation

(A10) in Appendix A (recalling that in this case u(c1, c2, c3, l) = γ(l)
3∏
i=1

c
1/3
i ). Once again we

provide the algebraic detail for completeness. Note that the unit cost functions for the three
sectors can be written as

Ci (p, w) = µiw
αlip

aij
j ,

where µi ≡
(
αli
aij

)aij
+
(
aij
αli

)αli
. In equilibrium, we have

pi = Ci (p, w) = µiw
αlip

aij
j . (C5)

Using the fact that the wage is the numeraire, we can solve for the price system in (C5) as

pi = γ
1

1−aijajkaki ,

where γ ≡ µiµ
aij
j µ

aijajk
k , confirming our general results that prices are constant regardless of

demand shocks. Given this constancy, we switch to working with nominal values, which we
denote by a tilde, “~”. Then the resource constraint implies

dỹi = dc̃i + dx̃ki + dG̃i.

Using the first-order condition of firms, aij =
x̃ij
ỹi
, we have

dx̃ij = aijdỹi.

Combining this with the resource constraint, we obtain

dỹi = dc̃i + akidỹk + dG̃i. (C6)

Recall that the household optimization implies

c̃i =
1

(1 + λ) 3
− G̃i + G̃j + G̃k

(1 + λ) 3
.

Differentiating this expression yields

dc̃i = −dG̃j + dG̃i + G̃k
(1 + λ) 3

. (C7)

Combining (C7) in (C6), we arrive at the system of equation (for i = 1, 2, 3):

dỹi = −dG̃i + dG̃j + G̃k
(1 + λ) 3

+ akidỹk + dG̃i.

Solving this system of equations delivers the desired result:

dỹi =
1

1− aijajkaki

{
dG̃i + akiajkdG̃j + akidG̃k

−(1+aki+akiajk)
(1+λ)3

[
dG̃i + dG̃j + dG̃k

] } .



The Long and Plosser (1983) Model

Long and Plosser’s (1983) model is closely related to the one we studied in the main text, with
the main difference that there is a one period delay in production, so that inputs dated t− 1
produce output dated t, which implies that shocks spread across industries only slowly. More
specifically, the production function for sector i at time t is

yi,t = ezi,t l
αli
i,t−1

n∏
j=1

x
aij
ij,t−1. (C8)

The Long-Plosser model also includes capital, from which we abstract to simplify the discussion
here. We also assume that the government budget has to be balanced at each date.

The preferences of the representative household are now defined over sequences of con-
sumption bundles as

∞∑
t=0

δt

[
ln γ(lt) + βi

n∑
i=1

ln ci,t

]
,

where δ ∈ (0, 1) is the discount factor.1 The representative household can save using a risk-free
asset, with gross interest rate Rt at time t (meaning that one dollar invested at time t − 1
in this risk-free asset pays Rt dollars for sure at time t), and because there is no capital, this
asset must be in zero net supply.

Since there is no capital, the resource constraint takes the same form as in the static
economy:

yi,t = ci,t +

n∑
j=1

xji,t +Gi,t−1, (C9)

where we have adopted the timing convention that government spending decisions from time
t− 1 are implemented at time t.

An equilibrium is now defined as sequence of prices such that markets at each date clear.
The equilibrium in this dynamic model continues to be very tractable and can be represented
by a log-linear equation for the evolution of sectoral outputs as shown in the next proposition.

Proposition C1 In the dynamic Long-Plosser model:

1. The equilibrium evolution of sectoral outputs in the presence of technology shocks (and
no government spending shocks) is given by

d ln yt+1 = A× d ln yt + dzt+1. (C10)

2. Suppose that Suppose γ(l) = (1 − l)λ. Then the equilibrium evolution of sectoral output
in the presence of government spending shocks (and no technology shocks) is given by

dỹt+1 =
(
I−δAT

)−1(−∑n
j=1 dG̃j,t

1 + λ
β + dG̃t

)
, (C11)

where G̃t is the vector of nominal government spending across sectors at time t, and ỹt
denotes the vector of nominal sectoral output at time t.

1Differently from the static model, the utility function is no longer invariant to monotone transformations,
thus Cobb-Douglas and log preferences are no longer equivalent, and we adopt the standard log preferences used
by Long and Plosser (1983).



Proof. Part 1. Since there is no capital, the profit maximization of sector i at time t can
be written as

max
li,t,xij,t

pi,t+1Rt
ezi,t+1 l

αli
i,t

n∏
j=1

x
αij
ij,t − wtli,t −

n∑
j=1

pj,txij,t

 , (C12)

where output prices are discounted by the gross interest rate between dates t and t + 1, Rt,
because they accrue with one period delay. Consider the dual of this problem, which gives the
unit cost function for sector i as

Ci,t+1 (pt, wt) = e−zi,t+1Biw
αli
t

n∏
j=1

p
aij
j,t ,

where Bi ≡
[
1/αli

]αli n∏
j=1

[
1
aij

]aij
. In the competitive equilibrium, we have

pi,t+1
Rt

= e−zi,t+1Biw
αli
t

n∏
j=1

p
aij
j,t

to ensure zero profits (recall that Rt is known at time t). Given the interest rates representing
intertemporal prices, we can set wages in each period as the numeraire, i.e., wt = 1 for all t,
and taking logs, we arrive at

ln pi,t+1 − lnRt = −zi,t+1 + lnBi +
n∑
j=1

aij ln pj,t. (C13)

The representative household’s problem can be represented as

E0
∞∑
t=0

δt

ln γ (lt) +
n∑
j=1

βi ln ci,t + µt

RtAt + wtlt −At+1 −
n∑
j=1

pi,tci,t

 ,

where the term in square brackets is the flow dynamic budget constraint of the household, with
At denoting asset holdings, and µt is the Lagrange multiplier or the marginal value of income
at time t. This problem has the familiar first-order conditions given by

ci,t :
βi

pi,tci,t
= µt =⇒ lnβi − ln ci,t − lnµt = ln pi,t (C14)

At+1 : −δtµt + δt+1RtEtµt+1 = 0 (C15)

lt :
γ′ (lt)

γ (lt)
+ µtwt = 0 (C16)

Combining (C13) and (C14), we obtain

lnβi − ln ci,t+1 − lnEtµt+1 − lnRt = −zi,t+1 + lnBi +
n∑
j=1

aij
[
lnβj − ln cj,t − lnµt

]
or

d ln ci,t+1 + d lnEtµt+1 + d lnRt = dzi,t+1 +

n∑
j=1

aij [d ln cj,t + d lnµt] (C17)



Because the risk-free asset is in zero net supply, we must have At = 0 for all t, so that from
the representative household’s budget constraint

ltwt =
pi,tci,t
βi

=
pj,tcj,t
βj

(C18)

for all i, j and t. Combining this equation with (C14), we obtain

µt =
1

lt
, (C19)

which together with (C16) implies

1 = − ltγ
′ (lt)

γ (lt)
,

and thus
lt = l∗ for all t. (C20)

Finally combining this result with (C15) and (C19), we obtain that, regardless of the realization
of the stochastic shocks,

µt = µ∗ and Rt =
1

δ
.

This equation, combined with (C17) gives the law of motion of consumption of the output of
different sectors as

d ln ci,t+1 =
n∑
j=1

aijd ln cj,t + dzi,t+1,

or as
d ln ct+1 = A× d ln ct + dzt+1. (C21)

Consider next the first-order conditions of the profit-maximization problem, (C12):

aij
pi,t+1
Rt

yi,t+1 = pj,txij,t. (C22)

Using this expression for substituting for xji,t in the resource constraint, (C9), using the fact
that in this part, Gi,t−1 = 0, and rearranging, we obtain:

1 =
ci,t
yi,t

+ δ

n∑
j=1

aji
pj,t+1yj,t+1
pi,tyi,t

,

and finally, since from (C18) pi,tci,t
βi

= l∗, this equation can be written as

βi
yi,t
ci,t

= βi + δ

n∑
j=1

ajiβj
yj,t+1
cj,t+1

,

or defining ψi,t ≡ βi
yi,t
ci,t

and denoting the vector of ψi,t’s by ψt, as

ψt = β+δATψt+1.

Substituting this equation forward, we obtain

ψt = β+δATβ+δ2
(
AT
)2
β + ...+δK

(
AT
)K
ψt+K .



Because A’s largest eigenvalue is less than 1 in absolute value, as K → ∞, the last term
converges to zero, yielding

ψt =
(
I−δAT

)−1
β,

which implies that ψi,t is constant for all i and t, and thus

d ln yi,t = d ln ci,t.

Combined with (C21), this yields (C10).
Part 2. The analysis until equation (C18) from part 1 still applies. This equation needs to

be modified, however, because of taxes to finance government spending. In particular, At = 0
now implies

ltwt − Tt =
pi,tci,t
βi

=
pj,tcj,t
βj

(C23)

=
1

µt
,

with the second line following from (C14). Combining (C16) with (C23), we obtain

lt =
1 + λTt
1 + λ

µt =
1 + λ

1− Tt
(C24)

Rt =
1− EtTt+1
δ (1− Tt)

,

where the last equation of (C24) has expected taxes next period, because next period’s govern-
ment spending shocks and thus taxes are unknown at time t. Since, by assumption, EtG̃τ = G̃t

for all τ > t, we also have EtTt+1 = Tt, and thus

Rt =

(
1− Et+1Tt+1
δ (1− Tt)

)
=

1

δ
. (C25)

Next multiplying the resource constraint, (C9), with pi,t to convert it into nominal terms
and substituting pi,tci,t = βi

µt
(from (C23)), and using (C22), we have

ỹi,t =
βi
µt

+
n∑
j=1

aji
ỹj,t+1
Rt

+ G̃i,t−1,

where note that we write ỹi,t+1 instead of Etỹi,t+1, since there are no productivity shocks and
thus given the input choices at time t, ỹi,t+1 is known at time t. Substituting for µt from (C24)
and for Rt from (C25), and writing it in matrix notation, we have

ỹt = gt−1β+δATỹt+1 + G̃t−1, (C26)

where gt ≡
1−
∑n
j=1 dG̃j,t
1+λ . Writing the same equation at future dates and taking expectations

at time t, we have
ỹt+1 = gtβ+δATỹt+2 + G̃t,



and
Etỹt+k = Etgt+k−1β+δATEtỹt+k+1 + EtG̃t+k−1.

Substituting these terms forward, we obtain

ỹt = gt−1β + G̃t−1+δA
T
(
Etgtβ + EtG̃t

)
+δ2

(
AT
)2×(Etgt+1β + EtG̃t+1

)
+. . .+δK

(
AT
)K ×Etỹt+K .

Using the fact that δK
(
AT
)K → 0 as K →∞ (again because A’s largest eigenvalues less than

one in absolute value) and that EtG̃τ = G̃t for all τ > t, and leading by one period, we have

ỹt+1 = gtβ + G̃t + δAT×
(
gtβ + G̃t

)
+ δ2

(
AT
)2 (

gtβ + G̃t

)
+ . . . .

Finally, differentiating, we obtain

dỹt+1 = dgtβ + dG̃t + δ
(
AT(dgtβ + dG̃t

)
+ δ2(

(
AT
)2

(dgtβ + dG̃t)+...

=
(
I− δAT

)−1(−∑n
j=1 dG̃j,t

1 + λ
β + dG̃t

)
,

verifying (C11).
There are three important features to emphasize. First, despite the intertemporal nature

of the linkages, the equilibrium still takes a simple form, with many of the same features as the
ones that emerged in our static economy. Secondly, and relatedly, equilibrium dynamics in the
case of technology/productivity shocks, summarized in equation (C10), are particularly close
to the responses in the static model derived in the main text. Dynamics in the presence of
government spending shocks are a little more complicated, however, because in this dynamic
environment, changes in government spending affect the interest rate and via this channel
sectoral prices (whereas in the static model prices remained constant in response to changes in
government spending). This complication notwithstanding, equation (C11) still takes relatively
simple form and shows how sectoral outputs evolve in response to changes in government
spending patterns (and we will see its close relationship to equation (7) in the text in the next
proposition). Finally, equilibrium dynamics now depend on the input-output matrix, A or Â,
and not on the Leontief inverse. This is because, given that one period delay in converting
inputs into output, indirect effects take place over time. Consequently, for tracing the effect
of last period’s output on today’s output, which focuses on direct effect, it is the input-output
matrix that is relevant. Nevertheless, because the indirect effects now accumulate over time,
the long-run response to shocks is again given by the Leontief inverse as we show in the next
proposition.

Proposition C2 1. Consider a one-time productivity shock to industries, dzt (with dzt =
0 for all τ > t). Then

d ln y∞ = (I−A)−1 × dzt. (C27)

2. Consider a one-time government spending shock to industries at time t, dG̃t (with dG̃τ =
0 for all τ > t), and suppose that δ → 1. Then

dỹt+1 = HT

(
−
∑n

j=1 dG̃j,t

1 + λ
β + dG̃t

)
,



or in log form
d ln ỹt+1 = ĤTΛdG̃t. (C28)

where Λt is the date-t version of the matrix defined in Appendix A equation (A8), given
in equation (C29) below.

Proof. Part 1. Take t = 0 for simplicity. Then, from equation (C10), we have

ln y0 = A× ln y−1 + z0

ln y1 = A2× ln y−1 + A× z0 + z1
...

ln yK = AK+1× ln y−1 + AK×z0 + AK−1×z1 + ...+ zK

Since dzt = 0 for all t > 0, zt = z0 for all t > 0, and thus

ln yK = AK+1× ln y−1 + AK×z0 + AK−1×z0 + ...+ z0.

Differentiating, we have

d ln yK =
[
AK + AK−1 + ...+ I

]
dz0.

As K →∞, we obtain (C27).

Part 2. This result is obtained directly from (C11) by taking the limit δ → 1, which yields

dỹt+1 = H×

 dG̃1,t − β1
1+λ

∑n
j=1 dG̃j,t

dG̃2,t − β1
1+λ

∑n
j=1 dG̃j,t

...

 ,

verifying equation (A10) in Appendix A. Moreover, following the same steps as in Appendix
A (in particular, equation (A8)), we can equivalently write this in log form as follows:

dỹi,t+1 =
n∑
j=1

hji

(
dG̃j,t −

βj
1 + λ

n∑
k=1

dG̃k,t

)
for each i

dỹi,t+1
ỹi,t+1

=
n∑
j=1

ĥji
1

ỹj,t

(
dG̃j,t −

βj
1 + λ

n∑
k=1

dG̃k,t

)
,

and thus
d ln ỹt+1 = ĤTΛtdG̃t

where where

Λt =



(
1− β1

(1+λ)

)
1

p1,ty1,t
− β1
(1+λ)

1
p1,ty1,t

...

− β2
(1+λ)

1
p2,ty2,t

(
1− β2

(1+λ)

)
1

p2,ty2,t

. . . (
1− βn

(1+λ)

)
1

pn,tyn,t


, (C29)



thus yielding the desired result.
The most noteworthy results in this proposition are the coincidence of equations (C27) and

(C28) with (6) and (7) in the text. In particular, (C27) highlights that the long-run response to
a one-time (permanent) technology shock in this dynamic model is identical to the equilibrium
response to technology shocks in the static model given by (6). Equation (C28), on the other
hand, highlights that the dynamic response to a one-time (permanent) government spending
shock is identical to the equilibrium response to government shocks in the static model given
by (7) provided that the discount factor δ is close enough to 1. These results underpin our
claims that our results and empirical strategy continue to be valid even if data are generated
by a dynamic model in which shocks spread across sectors over time.

Monte Carlo Evidence

We now use the results of the previous subsection as the basis of our Monte Carlo exercise. We
use the equations of the Long-Plosser model, (C10) and (C11), derived above to trace out the
dynamics of output in response to technology in government spending shocks. We also add an
additional error term to capture other sources of productivity and demand shocks (as well as
measurement error). In the case of technology shocks, equation (C10) thus becomes

technology shocks : d ln yt = A× d ln yt−1 + ztfpt + εtfpt (C30)

where ztfpt denotes the vector of technology shocks, and εtfpt is the vector of additional shocks
assumed to be iid. We take productivity and government spending shocks to be persistent
(since we are considering short time periods, such as months or quarters, which will then be
time averaged into annual observations). In particular, we assume that

ztfpi,t = ρztfpi,t−1 + νt,

where νt ∼ N (0, 1). When time periods correspond to quarters, we set ρ = 0.85, which implies
an annual persistence of 0.52, corresponding approximately to the average persistence of the
shocks we study in our empirical work.

For equation (C11), we approximate Rt ' 1/δ ' 1, since time periods are taken to be short
(quarters or months), and then use the same steps as in the proof of Proposition C2 to convert
the equation in nominal terms into log changes and thus write (C11) as

d ln yt+1 = ĤTΛtdG̃t,

where

Λt =



(
1− β1

(1+λ)

)
1

p1,ty1,t
− β1
(1+λ)

1
p1,ty1,t

...

− β2
(1+λ)

1
p2,ty2,t

(
1− β2

(1+λ)

)
1

p2,ty2,t

. . . (
1− βn

(1+λ)

)
1

pn,tyn,t


.

Thus the equation we use to generate our simulated data the case of government spending
shocks is



government spending shocks : d ln yt = ĤTΛtz
G
t + εGt ,

where zGt denotes the vector of government spending shocks, and ε
G
t denotes the additional

shock in this case. We again take this latter shock to be iid, and impose the same persistence
structure on our shock of interest, i.e.,

zGi,t = ρzGi,t−1 + νt.

We also assume that εtfpt , εGt are iid and distributed N (0, 10) so as to generate suffi cient
noise in our simulated data. Throughout, we take the number of sectors to be 392 as in our
empirical work, and we use the actual input-output matrices from the U.S. data that featured
in our empirical work.

For quarterly data, we burn the first 160 quarters of simulated data, and then take 20
years of quarterly data, which we then time-average into annual observations, thus giving us
20 years of annual data with 392 sectors, which matches our empirical frame. We repeat this
procedure 1000 times.

We then estimate our main specification from the text, equation (12), on these simulated
datasets. As in our main text, upstream and downstream effects are computed from equa-
tions (13) and (14). The following regression equation reports mean values and the standard
deviation of the estimates across the 1000 runs, starting with the case of technology shocks:

d ln yt = −0.002
(0.012)

× d ln yt−1 + 0.770
(0.037)

× dztfpt−1 + 0.014
(0.206)

× dztfp,upt−1 + 0.881
(0.327)

× dztfp,downt−1 .

Panels A-D of Appendix Figure 4 illustrate the distributions of each coeffi cient across these
1000 simulations. Both our summary equation and the figure clearly show that we estimate
no upstream effect and significant downstream effects as predicted by theory. The coeffi cient
on the lagged dependent variable is zero, reflecting the fact that there is no other source of
persistence (such as capital accumulation) in our simulated data. Panel E of the figure turns
to the implied tests of the theoretical restriction (where we again follow the theory and include
all indirect effects from own shocks together with the own shock). It plots the distribution of
p−values of the test for this theory-implied restriction. We see that this restriction is rejected
in about 18% of the cases at the 5% level. This somewhat high rejection rate is a consequence
of the fact that time averaging the simulated data affects the own and downstream effects
differentially. Nevertheless, we find it encouraging that in the great majority of the cases, this
restriction is not rejected.
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Appendix Figure 4. Distribution of coeffi cient estimates and p-values for coeffi cient equality tests

from 1000 Monte Carlo simulations in response to technology shocks at quarterly frequency.

The next equation summarizes the results from government spending shocks, with the full
results shown in Appendix Figure 5. The overall pattern is very similar and again consistent
with our theoretical predictions, with one notable difference that, in this case, despite time-
averaging the theory-implied restriction between own and network effects is rejected in about
4% of the cases at the 5% level, approximately as we would expect.

d ln yt = −0.012
(0.011)

× d ln yt−1 + 0.781
(0.034)

× dzGt−1 + 0.761
(0.182)

× dzG,upt−1 − 0.008
(0.221)

× dzG,downt−1 .
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Appendix Figure 5. Distribution of coeffi cient estimates and p-values for coeffi cient equality tests

from 1000 Monte Carlo simulations in response to government spending shocks at quarterly frequency.

We next depict the same analysis when simulating the model at the monthly frequency,
which in particular implies that we set ρmonth = 0.947, so that we have the same annual
persistence of shocks. We now use 1000 runs of 20 years each, and again burned the equivalent
of 20 years of data (480 months). The results for technology shocks are once again similar, as
summarized in the next equation and in Appendix Figure 6 below.

d ln yt = −0.031
(0.014)

× d ln yt−1 + 0.730
(0.022)

× dztfpt−1 + 0.002
(0.092)

× dztfp,upt−1 + 0.769
(0.133)

× dztfp,downt−1 .
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Appendix Figure 6. Distribution of coeffi cient estimates and p-values for coeffi cient equality tests

from 1000 Monte Carlo simulations in response to technology shocks at monthly frequency.

Once again, in response to technology shocks, there are no upstream effects and well-
estimated downstream effects, and theory-implied restrictions are accepted in the majority of
the cases.

Turning next to government spending shocks, we find a similar pattern consistent with
theory as summarized in the next equation and in Appendix Figure 7:

d ln yt = −0.035
(0.014)

× d ln yt−1 + 0.734
(0.020)

× dzGt−1 + 0.711
(0.089)

× dzG,upt−1 − 0.0003
(0.098)

× dzG,downt−1 .
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Appendix Figure 7. Distribution of coeffi cient estimates and p-values for coeffi cient equality tests

from 1000 Monte Carlo simulations in response to government spending shocks at monthly frequency.

Measurement Error

Our second Monte Carlo exercise investigates whether measurement error in the input-output
matrix will lead to incorrect inference (partly because this measurement error might be magni-
fied in the Leontief inverse). For this exercise, we directly simulate data at the annual frequency
from our baseline model (thus using the Leontief inverse matrices), and since we would like
to investigate whether, in the presence of measurement error, network effects from technology
shocks might be incorrectly identified as resulting from government shocks and vice versa, we
combine (C10) and (C11) and simulate the data in the presence of both types of shocks pro-
creating according to theory as well as additional noise representing other shocks. Namely, we
use the equation

d ln yt+1 = γ × d ln yt + αdown ×H× dztfpt + αup × Ĥ×Λt × dz
G
t + εt, (C31)

where dztfpt and dzGt are the vectors of technology and government spending shocks, and we
take them to be iid and distributed N (0, 1). The additional noise εt is assume to be distributed
N (0, 1/12) . We set γ to the average of its empirical estimates, 0.085, and we again use the
Leontief inverse matrices H and Ĥ from the data as in our empirical work. To investigate
whether positive downstream (upstream) effects will be correctly identified and whether we



will also be able to estimate precisely zero effects when such propagation is absent, we consider
four different scenarios for αup and αdown: (i) αup = 1, αdown = 1, (ii) αup = 1, αdown = 0,
(iii) αup = 0, αdown = 1, and (iv) αup = 0, αdown = 0, covering all four possibilities (where
the normalization of the positive effects to 1 is without loss of any generality). We again run
1000 simulations in each case.

In estimating our main empirical model, equation (12), we introduce randomly-generated
measurement error on the actual matrix, so that the matrix we use in the estimation becomes

Aε =


a11 + ε11 a12 + ε12 ...
a21 + ε21 a22 + ε22

. . .

ann + εnn


and Âε is constructed analogously. To make this demanding test of our empirical strategy,
we introduce a considerable amount of measurement error and set the standard deviation of ε
equal to the average entry of the input-output matrix, ā ≡ 1

n2

∑
i

∑
j
aij . That is,

εij , ε̂ij∼N (0, ā) ,

and different draws are independent. With this amount of measurement error, the ranking of
the entries of the input-output matrices can be considerably different than what we measure.
We then compute the Leontief inverses in the usual manner: Hε = (I−Aε)−1 and Ĥε =(
I− ÂεT

)−1
. We again estimate equation (12) computing the downstream and upstream

effects according to equations (13) and (14).
We next report the results of this exercise, starting with the benchmark of no measurement

error when there are both upstream and downstream effects, and then moving to the four cases
indicated above. Throughout, given our motivation explained above, we estimate network
effects from technology and government spending shocks simultaneously.2

Case 0, No Measurement Error, αup = 1, αdown = 1

In this case, both own effects and network effects are precisely estimated, and are consistent
with theory. In particular, we find downstream propagation of technology shocks and zero
upstream propagation of these shocks, and upstream propagation but no downstream propa-
gation of government spending shocks. Quantitatively, own shocks and the relevant network
effects are of the same magnitude as predicted by theory. These results are summarized in the
next equation.

dln yt+1 =


0.085
(0.006)

× dln yt − 0.003
(0.054)

× ztfp,upt + 1.002
(0.065)

× ztfp,downt + 1.000
(0.010)

× ztfp,ownt

+0.980
(0.055)

× zG,upt − 0.004
(0.064)

× zG,downt + 1.000
(0.010)

× zG,ownt

 .

(C32)

2The results are similar if the two types of network effects are estimated separately.



Case 1, Measurement Error, αup = 1, αdown = 1

In this case, as shown by the next summary equation, we find the expected pattern of down-
stream propagation of technology shocks and upstream propagation of government spending
shocks, and no upstream propagation from technology shocks and no downstream propagation
from government spending shocks. Moreover, despite the sizable amount of measurement er-
ror in the input-output matrices, the estimated magnitudes of the relevant network effects are
consistent with theory: on average, downstream network effects from technology shocks have
the same magnitude as the own effect of technology shocks, and upstream network effects from
government spending shocks likewise have the same magnitude as the own effect of government
spending shocks.

dln yt+1 =


0.085
(0.006)

× dln yt − 0.001
(0.054)

× ztfp,upt + 0.992
(0.063)

× ztfp,downt + 1.000
(0.011)

× ztfp,ownt

+0.970
(0.053)

× zG,upt − 0.002
(0.061)

× zG,downt + 1.000
(0.010)

× zG,ownt

 .

The full distribution of the parameter estimates, focusing on upstream effect, downstream
effects and own effects, are shown in Appendix Figure 8.
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Appendix Figure 8.

Distribution of coeffi cient estimates from 1000 Monte Carlo simulations in response to

technology and government spending shocks with measurement error and αup = 1 and αdown = 1.



In summary, in this case, with both government spending and technology shocks, despite the
substantial amount of measurement error, our regressions correctly identify the theory-implied
network effects and estimate zero propagation when there should not be any.

Case 2, Measurement Error, αup = 1, αdown = 0

We next turn to the (hypothetical) case in which the data generating process includes upstream
propagation in response to government spending shocks, but no downstream propagation in
response to technology shocks.3 The results are again encouraging for our empirical strategy
as summarized by the next equation and Appendix Figure 9, and show that our regressions
estimate the relevant network effects correctly and estimate zero effects when there are no
network effects.

dln yt+1 =


0.085
(0.006)

× dln yt + 0.001
(0.052)

× ztfp,upt − 0.001
(0.066)

× ztfp,downt + 0.000
(0.010)

× ztfp,ownt

+0.974
(0.056)

× zG,upt − 0.005
(0.063)

× zG,downt + 1.000
(0.010)

× zG,ownt

 .

3This case is not possible when our theory applies, since upstream propagation in response to government
spending shocks and downstream propagation in response to technology shocks are determined by the same
input-output linkages. Nevertheless, this hypothetical case enables us to investigate whether our regressions
will correctly identify the presence or the absence of these effects when one is present and the other one is not
as might be the case under alternative theories.
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Appendix Figure 9. Distribution of coeffi cient estimates from 1000 Monte Carlo simulationsin

response to government spending shocks with measurement error and αup = 1 and αdown = 0.

The results show zero own effects and zero network effects from technology shocks, and
zero downstream propagation from government spending shocks, and correctly identify the own
effects and upstream propagation from government spending shocks, with the right magnitudes.

Case 3, Measurement Error, αup = 0, αdown = 1

We find the same pattern when there is downstream propagation in response to technology
shocks but no upstream propagation in response to government shocks as summarized next:

dln yt+1 =


0.085
(0.008)

× dln yt + 0.004
(0.052)

× ztfp,upt + 0.989
(0.062)

× ztfp,downt + 1.001
(0.011)

× ztfp,ownt

−0.003
(0.052)

× zG,upt − 0.002
(0.061)

× zG,downt + 0.000
(0.010)

× zG,ownt

 .



­0.2 0 0.2
0

100

200

300
A. Technology, upstream

0.5 1 1.5
0

100

200

300
B. Technology, downstream

0.95 1 1.05
0

100

200

300
C. Technology, own

­0.2 0 0.2
0

100

200

300
D. Government, upstream

­0.5 0 0.5
0

50

100

150

200

250
E. Government, downstream

­0.05 0 0.05
0

100

200

300
F. Government, own

Appendix Figure 10.

Distribution of coeffi cient estimates from 1000 Monte Carlo simulations in response to

technology and government spending shocks with measurement error and αup = 0 and αdown = 1.

Case 4, αup = 0, αdown = 0

Finally, we turn to the case in which there are no network effects, and in this case our equations,
as summarized next, correctly identify no upstream or downstream propagation in response to
either government spending or technology shocks (as well as no own effects).

dln yt+1 =


0.085
(0.011)

× dln yt + 0.000
(0.052)

× ztfp,upt + 0.002
(0.062)

× ztfp,downt + 0.000
(0.010)

× ztfp,ownt

−0.001
(0.053)

× zG,upt + 0.000
(0.064)

× zG,downt + 0.000
(0.010)

× zG,ownt

 .
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Appendix Figure 11.

Distribution of coeffi cient estimates from 1000 Monte Carlo simulations in response to

technology and government spending shocks with measurement error and αup = 0 and αdown = 0.

Overall, these results bolster our confidence in the reliability of our empirical strategy, even
in the presence of substantial measurement error.




