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Appendices

A Matrix Representation of Consumption Model

In this section, we solve for the optimal consumption policy for beliefs based on an ARIMA(p,1,0)

model:
Adt = @(L)Adt + 0.4

We can represent this system as an AR(1) system with evolution operator ®:

Ad; ";1 "(’)2 4(’)’” Ad; 4 2
Adia | _lg 1 . o |Ad2| 4|0 £
syl G g o] Lad] Lo

There is also the foreign debt variable, b;, which evolves as
biy1 =ct+Rby —dy — y.

Here we analyze a slightly more general version of the model, which includes constant labor
income y. We also assume that R is constant. Define the AR(1) representation state vector:

Zt:[bt Ct—1 1 y dt Adt Adt_l Adt_p+1]/

We use CARA utility with habits, as in Alessie and Lusardi (1997):

u(ct,ci-1) = = exp(—a(ct —yci-1))

Now, guess a linear policy function, ¢; = P’z;. Because the policy function is linear, we can define
the AR(1) evolution operator:

R 00 -1 -1 0 ]
000 0O 0 0
) 001 0 0 0
M=M+NP = 000 1 o0 O + (e1,p45 + €2,p45) P,
000 0 1 ¢,
0 00 0 0 o |

where ¢, ,, is the i’'th basis vector of length n. This satisfies
Zr = Mthl + Cét,

where C = (65,p+5 + e6,p+5) ¢, i.e. C is a column vector that applies the random shock to d; and
Ady and is otherwise empty. An alternative evolution equation is

zt = Mz;_1 + Nc;_q + Cey.
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We guess that the value function is of the form

b4
V(z) = —— exp(—aler — 7er-1))
Define P = P — e, ,+5, and plug into the Bellman equation:

_Eeﬂxlyzt _ _lefap/zt +0E _Eefaﬁ’ztﬂ
4 14 14

The expectation for P'z; 1 is P’Mz;, and the variance is C'PP'C. So the Bellman equation simplifies

to:

_Eefacp’zt _ _lefzxp’zt _ (Sgeﬂx(P’Mztf%C’Pﬁ’C)
o 14 14

Now, without worrying about optimality, we solve the Bellman equation. Dividing through by

common terms, ) B
Y =1+ 5« (M-D)z-3CPPC)

For this equation to be solved for all z;, it must be that for some constant x,
PP(M—1z =«
Next, we need to derive an optimality condition for c;. The first-order condition is that
exp(—aDP'z;) + 6E[Y exp(—aP'z,1)P'N] =0
Expanding the expectation, and noting that P'N is a scalar constant,
exp(—aDP'z;) + 6¥YP'N exp(—a(P' Mz; — %C’PP’C) =0
Dividing through,
0=1+0¥YPNexp(—a(P(M— I)z — %C’?P’C)

Again, note that if D(M — I)z; = « for all ¢t, this equation can be satisfied for some constant ¥.
Combining the two equations, we can see that

0=1+DPN(Y-1)
Solving,
1
PN
At this point, we will try to guess P and show that our guess satisfies the equations above. For
some constants K and Q,

Y=1-

—(R-1)(1-3%)
x
R
Q
P = R—y
R
R—y
R /
[Kel, (1- k@) k]



We can first solve for P'N.

p/N:(P—762,p+5)N:—(R_1)<1_f)+7_,),:1_R

Therefore,

Returning to the first order condition,

0 = 1 — Rée*(P'(M~-D)z—3C'PP'C)

Next, we need to confirm that P'(M — I)z; = « for all .

R—1 0 0 -1 -1 0 ]
0 —-10 0 0 0
. 0 0 0 0 0 0
_J = —1 P = > P!
M M—I+N o o o0 o0 o o |TN
0 00 0 0 ¢,
| 0 0 6 0 0 &-1I
~(R-11-F) & Q g g Ka,(I-z®)~x®]
-(R-1)(1-%) x Q F “F* Ke, —ﬁq’)‘“q’
NP — 0 0 0 0 0 0/
0 0 0 0 0 0
0 0 0 0 0 0
L 0 0 0 O 0 0 |
[ (R-1)% R% Q R% R*T Key ,(I = @)~ @]
SR-DA-F) T QT K, (- @) e
M—1— 0 0 0 0 0 0/
0 0 0 0 0 0
0 0 0 0 0 e , P
i 0 6 0 0 0 d—1
— 0 -/
0
—Q(R—-1)
P(M—1)= 0
0
/
—(R—1)Ke; (I - %@)*%@ + 8lel @+
L +Key ,(I = g @) 'z ®(@ ) ]

We need to solve for K so that the last element becomes zero. Simplifying,

1 ! 1 R — Y 1 ! 1 1
— / D / /
0= RKel/P (I R ) 7R® + 7R el/p® + RKELP <I — 7R q)> 7R¢7Rq>
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Noting that

We can simplify to
0=2=7 o_Rrre Lo
R 1p 1p
Solving,
_R—vy_ Y
IR -3

For this value of K, and any value of Q, P(M — I)z; = x = —Q(R — 1) for all t. To solve for Q, we
can rewrite the FOC, replacing for our value of ¥,

0=1—exp <1x [i In(RS) + Q(R—1) + gC'P?'C})

-1
P'C=o, (1 — %) eirp (I — 11QCI>> e1,p = 0c
1 1 X 5

We have now fully solved for the linear policy function, and shown that it is optimal. In the body
of the paper we impose the additional restriction, y; = 0.

B Asset Pricing

Next, we derive a price for the dividend stream. Our timing convention is that the price at time
t does not include the dividend at time t. To calculate the equilibrium price of the Lucas tree, we
consider the asset allocation problem (as opposed to the planner’s problem). We then solve for
the asset price that leads the representative agent to hold one unit of the equity tree.

Start with the Bellman Equation:

Vv (cH,wt, pt,cﬁ) =supu(cy,ci—1) + EoV (Ct/ (wy — ¢t — Oipr) R+

01,ct

+0; (dis1 + pes1) s Pesas jt+1>,
or alternatively
B ~R
% (cH,xt,pf, dt) ~ A ®R=1) exp (—a [cr — yer-1]),

where v v
C = Ect_] + (1 — ﬁ) Xt — lp

Consumption is a weighted average of lagged consumption and the (risk-neutral) annuity value
of future dividends, x;, shifted down by an additive constant 1. Let’s write x; so that we allow the
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agent to buy more or less of the risky tree. Buying more means raising 6 above unity.

R-1 E.d
Xt:T —Rbt (9—1)pt+dt+92 H_S
S§=
1 1
P = 1|2 = 1In(RY) + 2Vart(Act+1)
In equilibrium, 6 = 1 (supply equals demand). The associated first-order condition is:

av
_— = —= 1
10 0ato

We can expand this derivative:

av o oV 8ct axt aCt alp

a0 " 9 |ox 90 T apae|
which implies that the asset price, p;, is chosen such that
8ct axt aCt 81/7 .
ax 90 apoap Cate=1 @
Let’s evaluate each of these partial derivatives in turn:
dcy 0%
ox ( B E)
Jdxy  R-— Etdt+s
% = m | Z
der
P
P 1 gaVart(ActH)
;  R-12 00
1
= x-1 229Vart(Act+1)

Now we are ready to use our equilibrium condition (equation (4)):

dcyox dct P B
%0 oy 96 (evaluated atf = 1)
7\ R — E dt+s
( _E) P”LZ R—lzzv‘mmc’f+1>
Rearrange to get
oy + Z E st Ra x Vary(Aciiq)
J— t p—
(1- %) (R—17
2 Eidirs  Ra x Variy(Aciiq)
S LTR T Ao (Ro1)
s=1 (1-%) (R-1)
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We can also express the expectation of the discounted stream of dividends using our earlier matrix
notation, implying that

1 R 1 .\ '1. - Ra
d FlT—=®) =®Ad, — 2
t+R—1eLp< R ) RO A (R-1)2"

B.1 Equity Premium

The mathematical expectation of the equity premium does not exist in our economy, since equity
prices are not bounded below by zero. Instead of characterizing the expected equity premium,
we characterize the equity premium conditional on a history in which all dividends take on their
expected value. Specifically, assume that d; = d and Ad; = 0. The average quarterly return
conditional on this history is %, where

Il
|
S

PPTR—1 A-pER-127

Hence,

4 Ra 2

R-1 (1_%)(1{_1)20}
Therefore the annualized equity premium when dividends have a flat history (i.e., Ad; = 0) is
given by

d
4% {d — 2ag(R1)]

R=1 " (1-})(R-1)

C Rational Expectations Investors

C.1 Excess Gains with Natural Expectations

We start with the definition of the price in the natural expectations framework:

1 R 1.\t - Ra
= d L I-—=@) ZoAd; — 2
PP R t+R—lel"’< R ) ROCM T A-—R-12"

We would like to understand the gains process, defined as

St+1 = Pr+1 +diy1 — Rpy

We replace the ® matrix and o, with their ‘hat” equivalents, to denote misspecification. Expanding
the definitions of p; and p;;1, we find that

8+1 = drs1 + = (1 — Rely) +
R 1.\ "1,/ = = Ra 5
-— I— =& —@ (Adyy1 — RAd 0
R—lel"”< R ) R ( t+1 t>+(1_17<)(R_1)UC
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Define
Ra "2

P prR-1"

Using the definition of the AR process driving d;, we can rewrite this as

R s
St+1 :ﬁei/p (‘I)Adt + 0'g8t+131,p> +

R 1.\ ' a/1. . - - 1
—+ melrp I— E(D () E@Adt — Adt —+ E(TgSH_lel,p —+ ‘u

Regrouping terms,

R . 1.\"! 1 >
gyt (o-o(1-39) ' (-30)

R 1.\ "
+ ﬁage]_’p I - Eq) 61,p€t+1 + ‘u

We can define the vector M and constant o, so that the equation above is

i1 = MAd; + Og€ti1+ |

C.2 Budget Constraint

Let w; be the agent’s wealth in period ¢ before consumption is chosen. Assume the agent can hold
either risk-free assets with return R, or a risky asset. There are no shorting/leverage constraints.
The agent’s budget constraint is

w1 = (wr+y—cr —0pr) R+ 0¢(drs1 + pra1)
= (wr+y—c)R+0ige41,

where the choice variables are consumption (c;) and dollar amount in the risky asset (6;). We can
rewrite the budget constraint in terms of the evolution of g,

w1 = R(ws +y — ¢t) + 6:MAd; + Oroger 1+ O
It will be helpful to solve for an inter-temporal budget constraint. The transversality condition is

lim E;[R *w, ;] =0

k—o0

Seeing that

Ei[wiy2] = EfR(wiy1 —crr1 +y) + 9t+1MA5Tt+1 + O 1]
= EfR*(wr — i +y) + R(—cip1 + )01 MAdy 1 +
+ 0413 + RO:MAd; + Ry]
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We conjecture that

B 1 k1 -
E; [R kwt—i-k] = wy + E Z R ]Et [0t+]‘MAdt+]‘ + GtJrj,u - Rct+j + Ry]
=0

This holds trivially for k = 1 and k = 2. Assume it holds for k > 1:

E(R " wi1] = E[R ¥wp— R e+ R7Fy +
+ R0, MAd, . + Rik719t+kﬂ}

18 . -
—= E R ]Et[9t+jMAdt+j + 9t+]“1/l - RCH_]' + Ry]

g wt +
R&

By induction, it holds in the limit, and therefore the inter-temporal budget constraint is

> R
> EdR7er] = wi+ o=y + ZEt [RT10, i MAdyyj + R0, 1]
j=0 =

We can rewrite the sum of ¢; ; in terms of ¢;; = ¢;4j — ycpy -1

Y E(R Vel = Y E[RT (G + veigj1)]
j=0 j=0
= yC—1+ Z Et R™ ]Ct+]] + % E E; [R_]‘+1Ct+];1]
j=0 j=1
= Yo+ Y, Et[R_j5t+j] + % ) Ei[R ey ]

j=0

,\N
Il

0

We can then solve to see that

Y EfR ey ] = —(ve—1+ Y ER7é14])
=0 R =0

Rewriting the inter-temporal budget constraint,

OOE[R*]'@ ]=—yaa+(1-2 (w +7
]Z(:)t t+j t—1 ( R) t y

+ Y E[RT 0, MAd, + R—f—letﬂy]) (5)
=0

C.3 Utility and Value Functions

The agent has flow utility of the form

1 _
u(er,cp1) = — e @)
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It is convenient to define
Cr = cCr —yC1

The state is captured entirely by wy, c;—1, and Adi. The Bellman equation is

V(wy, ci—1, Ady) = max u(ér) + SE [V (wii1, & + vci—1, Adpr)]

Cr,0

The first order conditions are

oV, oV,
e — §E, RV _ 9V
! (Ct) d t{ oWy 41 dcy
and o
E t+1 Ad —
OE; |:awt+1 (M di + +0'g€t+1>:| 0
The envelope condition for w; is
oy Vi1
ow; OF: [8wt+1R
From the inter-temporal budget constraint (5),
Wi _ —v Wi
8ct,1 11— % awt

We use this to derive the Euler equations, which will be verified after deriving a solution.

Rewriting (6), and then using (7),

aV; Vv

/4 _ t+1 Y t+1

u (Ct) = 5Et |:Rawt+1 + 1— % awt+1:|
Ve = Wisr| _ Vi

(1 R) " (Ct) o 5Et |:Rawt+1:| - awt

Advancing time by one unit, and taking expectations,

( _ %) Ei [t/ (61)] = Et [g:]tti]

The consumption Euler equation, assuming 6R = 1, is therefore
M/(ét) = Et [M/(ét+1)]

The asset Euler equation is
0=F [(1 - %) ' (611) (MAJt fu+ agetﬂ)]

C.4 Guess and Check
We guess that

R—1 L
@t:DcHJr( _17{>< . wt+A’Adt+Ad§BAdt+q>,
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where A is a vector and B is a matrix. From this guess, it follows that

. R—1 ; S
¢t41 = Dey + ( - %) <th+1 + A'Ady 1 + Ady BAdy 1 + Q> (10)

From the budget constraint and the evolution of Ad:,

Crr1 = Do+
< ,),> % (R(Wt - Ct) + gtMAlft + th + 9tag£t+1> + AIQDAcI;—F
_r § / !
R + Aley poeep i1 + (@Adt + 81,p(Ts€t+1) B (q)Adt + e1,p(7e£t+1> +q

Taking expectations,

% (R(wt — Ct) + GtMAd_; + 9”1) + A/CDAd;—l—

X gt
Ei[ér41) = Do+ (1 —
t[Ce1] t < ) + Ad®'BOAd; + oZe) ,Bey,p +q

R

We can then write

i1 = E[Cr1]+
(1-%)

Define the following constants:

<%0tag +o0.A'eq p + oee) pBCIDAGE + UEAJ’CD’BeLp> €1t
— o?e] pBeLp + oe, »Bey, p€TL 1

0% R—-1 - -
v
A = (1 R)U elpBelp

We can rewrite 1/ (é41) as

ul(ét+1) p— e*a(E[étH]*A+ktst+1+/\g%ﬂ)’

and compute expectations to get

E[u'(¢11)] = e~ MEL]=1) 5 /°° ! e*”‘ktxfng’%dx

—o0 \/27T

Define another constant,
1

14+ 2aA

We can complete the square on the integral as follows:

S =

x2 + 2uk;s?x X+ akis?)?2 a2
—akx — aAx? — 0.5x% = —th = —(25;) + ?k%sz

S x+o¢k[52 2
- e ( 22 ) dx




We therefore conclude that
E[u,(CAt+1)] _ e—zx(E[é,H} A—jak?s?— 5 Ins?)
Next, consider the integral from the second Euler equation.

(x+aktsz ) 2

70‘(E[6f+1}7)\7%ak2 2 O'gxe 252 dx

E(u'(Gi41)048141) =€

o

For the integral, use the following transformation:

x + ak;s?
s
(x+vckts ’ 2 3
/ ragxe dx = / \ﬁ (su —akis®)e” 7sdu = —aoghss

We combine (8) and the equation above to see that
efa(Et[cAtﬁ]fAf%ak%szfﬁlnsz) (u+ MAJ;) _ e*tx(Et[CArH]*)\f%txkfsz)Dw.gktSB
Simplifying,
u~+ MAd; = (xcrgktsz

C.5 Solving for the Policy Rules

Next, we use consumption Euler equation to see that

R R 1 1
¢t = Et[6riq] — A — Euckf 2 %lns2

From our conjecture about ¢; (equation (10)), we can expand ¢&;1:

R 1 1
G+ A+ szkfsz + Elns2 =

R-1 7 7 7,
( _ %) ( = Erlwipa] + AEi[Adia] + Ei[Ady BA 1] + ‘7> + Dey

or

1 1
~ak?s? + —Ins* =

Gt3 2

R-1 . ﬁ
( - %) < ——Eilwr] + A'PAd; + Ad) BOAT; + q> + D¢

Expanding using the budget constraint,

1 1
— Dc; + Eak%sz —+ o Ins? =
R-1 o )
( - %) <REt 864110 + (R — 1) (wy — ¢t) + A'®@Ad; + Ady D' BOAd; + q>

52



Simplifying, and replacing c¢; with ¢; + yc;_1,

e (1-D+( —%) (R-1)) +
+ ((1—%) (R—l)—D) 'yct_l—l—%txkfsz%—%lnszz
v

( - ﬁ) (RR_l(MAg;‘FV)Gt‘F (R—1)wt+A’q>AaTt+AaT;cp/Bq>AaTt+q>

Let Q =1— D+ (1— %)(R —1). Simplifying, and expanding the terms of &,

R-1

(Q-1)y+QD)ct—1+Q (1 — %) < w; + A'Ady + QAd'BAd, + Qq> +
1 50, 1. 5
+2zxkts —1—20( Ins® =

R—-1 = - 3 -
(1 _ l) <(R —Dw + T(MAdt + )0 + A'®Ad; + Ad D' BOAd; + q)

R
We guess that
T
D= R
and see that this simplifies nicely:
Q = R
(Q-1)r+QD = 0
Therefore, noting that w; cancels,
I\ (A'AG + A BAA, 1o 1. o
R(1— %) (4D +AdBAT; +q) + 5akis? + ——Ins? =
i R—-1 7 TE AT 7 &/ 7
( - E) ~—— (MAd; + 1)0; + A'PAd; + A®'BOAG; +

Using the asset allocation Euler result, we see that

1 1 L .
Sakis? = o (4 + 2uMAd; + MM/ MAGL,)
8

Expanding using the definition of s,

1 14 2a) . . .
—ak?s? = 2 L 2uMAd; + Ad.M' MAd
o Mes 2¢w§ (V T2 t Ody t)

We also need to replace 0; using the asset allocation Euler equation:
U+ MAcTt = «xcrgszkt =

R-1 -
( _ l) (Xa'gsz <(R)6tag + 0 Aler, + aeei,pBCDAdt + UgAti_:@'Bel,p)
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Solving,

0 =

R 1 < i+ MA,
(

R—To; \ 71~ Daoes? 0. Aler, — 0ceh ,BOAd; — aeAjgcb’Bel,p>
R 8

To replace the term in the consumption equation,

R-1

——— (MAd; + 1)6, 12 + 2uMAd; + AcT;M’MAaE) -

eyl
(1— %) ao2s?

B ey, - % (A’el,pM + pel (B + B/)cp) Ad; —
Ug Ug

— ZAGM'¢;  BOA, — 7E A\ Be; , MAd
Og ' Og

We can now substitute all of these results:
7 AT TRAT 1 .,0 1. o 20
R( R> (A Adt—i—AdtBAdt—i—q) —|—2zxkts —|—2a Ins® = akis™+
—e Aoy — E(Aler, M+ el (B + B')®)Ad;—
107 5 - A -
(1-%)| - AT M'e) , BOA, — AP Ber,, MAd) +
+ A'®Ad; 4+ AdL®'BOAd, + g

The final version of the system is:

YN (WAL + ADBAL 12
R( R)(AAdt+AdtBAdt+q)+2a1ns_

1 + 20\ 2 7 RV 7
2uMAd, + AdLM MAd
2002 (1" +2uMAd; + Ad;M'MAd;)+
[ e, g (e Mg, (B4 B)@) A
(1-%) | +8di@ — Ze1, MYBOAT, + ATSB(® — Zor,M)AG— | (11)

— Ad|®'BOAd; + A'OAd; + q

This equation must hold for all value of Acft, so we use term matching. Note that A is actually the
upper left element of B, scaled by (1 — %)o?. Beginning with the second order terms,

, 1+ 2a)
Ad, (RB TSR M (@ - Tey, MY BO
2(1— %) ac? g
~D'B(@— Zey M) + ¢’Bq>> Ady =0
8
Define
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and note that

R 1.\"
= ﬁellp <I — R@) A

Because A has non-zeros only in the top row, and e; ,¢} p has non-zeros only in the upper left
element, which is one,

A= ellpei,p/\
Therefore,
R 1.\
81,pM — ﬁellpei/p <I - R®> ellpelllp[\
— Bp
O¢
and .
O Lo M=d-A=d
g
The equation for B can be rewritten:
T 1+ 2aA a A -
Ad [ RB— —— 2% p\/M — &'BO — &'Bd + &'BD | Ad, = 0
2(1— %) ac?

Substituting for A and regrouping terms,

7 _; /
Ad, (RB F(i= %)[WZMM

% M'é; ,Bey,M — &'Bd + A’BA) Ad; =0
8

2

_ £
%
By our earlier result relating e; , M and A, and assuming that this holds for all Ad;,

1 1., 4
B=—+————— MM+ -d'BO
R(A-Pacz "R

This is a discrete time Lyapunov equation. We can apply the standard convergence results to see
that, because the eigenvalues of ﬁcb are entirely less than 1 (no unit root), convergence is certain.

Therefore,

1 S ks 5
B=_———— Y R MM
2R(1 — §)ac? k;,

55



From this, we can easily solve for

A= (1 — %) ngeﬂ,pBel,p

Moving on to the first order terms in equation (11), and using the symmetry of B,

(R( —1)A’—1+2“)‘2VM—( —1)A/c1>

R 20«75 R
’)’)U
1-— 2L
+< R/ o,

— (e} ,AM + 2yei,pBCI>)> Ad; =0
8

Subsituting for A, and regrouping,

1 20, 0
RA"— ———————2uM — === —¢| ,Bey ,M — A'®
( 2(1-%)ac? og o PP
2 -
+ 7 Aley , M+ %2 qu>> Ady =0
g g

Again using the relation between e; , M and A,

1. 1 2u0, A -

RA(I — —®) — ———————2uM el ,BO | Ady =0
( =R - s ™Mt g ) t

This is solved by inversion:

2 1 A 1.\ "
A = ( M + 0.} BCI>> <1—c1>>

Finally, we solve for the constants:

_ oy, 14+2ad 5 _ Y\ HOe 4 1.2
(R 1)( R)q Zocagz H +<1 R) UgAel’p+2alnS =0

Consequently,
14 2aA 5 U0

2R—1) (1-F) a2~ o(R—1)

In (14 2aA).

g = Aler, +

2(R—1)(1-3)
Thus, we have proved that our guess for ¢; (equation (9)) was correct, with A, B, D and g as solved

for in this section.
Next, it is worth simplifying the expression for asset allocation:

0 =

R 1 ( 1+ MAd,
(

- — 0, Aey, — 20.¢, . BOAd,
R—1og \ (1—%)aoes? ° K Ly t)
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Applying the standard substitution for s and then A, we can write the optimal asset allocation as

0 =

R 1 <y+MAdZ L 2ua?,

p Bei, — 0. A'er , — 20.¢; , BOAd,
R—-1 Og (]_ — %) aog g elrp €Lp — el €1p Sel,p t)

The average value of 6 (assuming Ady = 0) is

- R n R 2uc? R o
G: [ _77A/
R—1(1—f)acz  R—1 o2 W Ro1g," "

Using results from appendices A and B, we can show that,

_ R 0.2
TR
. R-1 7Y e
0. = R (1_E) ;S(Tg.

Using these results, we can rewrite the average asset allocation as

- 02 R 2uc? R o
="t 4 - “re g —— ZE Al
2 TR=1 o2 W T R o1,
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