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Proof of Proposition 1

(i) First, we will derive the conventional Sato-Vartia price index. Rewrite the unit-cost function

for constant values of b;;=b; as,

N 1/y
C(pt,b)=(zbiPﬂJ : (Al)
i=1

where y= 1-1. The cost shares are,
sir =0Inc(p,,b)/0lnp;, :c(pr,b)_ybipiyt, (A2)

for T = t-1,t. Rewriting these, we obtain,

1/
o(p.b)  PisSich

c(Pe_1sb)  pgst T

for i=1,...,N. (A3)

Take a geometric mean of (A3) using the weights w; from (8) to obtain:

c(py,b) _ﬁ[ Py JWiﬁ[sit__lei/y :ﬁ(&jwi , (A4)

c(Pe1,b) S\ piey i=1\ Sit Pit-1

i=1

which shows that the Sato-Vartia index on the right of (A4) equals the ratio of unit-costs on the left.
To show that the product of share terms in the center of (A4) equals unity, take its logarithm to

obtain;



N
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Zwit(_AlnSit)/y = N i=l = 07
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i=1
where the first equality follows from the definition of w; in (8), and the second equality follows

from the fact that the cost shares sj; sum to unity over i =1,...,N, for t =t-1, t.

(if) Next, we show that we can choose the Si such that:

C(ptaBN) — II_\I[[ pit JWi (AS)
c(Pi-1,0) S\ Pit—1

where the weights wj are evaluated as in (8) using the cost shares sj; = 0 In ¢(p,b;)/0 In pj; for t=

t—1, t. From (A4), the ratio of unit-costs on the left of (AS5) equals:

C(ptaBN) =ﬁ( Dit jWi (A6)
c(Pi-1,0) i1\ Pit—1

where the W, are calculated as in (8) but using the cost shares 5;, = d1n c(px, b )0 In pig, T=t-1, t.

Thus, a sufficient condition for (A5) to hold is that there exist Bi such that:

wi= W%, i=1,..,N. (A7)

From the definition of the weights in (8), condition (A7) will hold iff there exists k, > 0 such that,

As; A
SSit e | 28| oL N (A8)
Alns; Aln's;



Define n; =c(p; ,5)/ c(Pi_q ,5) . Then, from (A2), the denominator on the right of (AS8)

equals y(Aln pjt — In 7). (If this is zero then we can replace the bracketed term on the right side of
(A8) by its limiting value of §;_; =S;; and adapt what follows to solve for Bi. So without loss of
generality, suppose y(Alnp. —In 7 )= 0.) Also using (Al) and (A2) to substitute for the numerator

on right side of (A8), we have,

As; k,| bp} b;p!,
it N(Alnpy ~Inm, )=~ 2P 2iPaor |y (A9)
Alns;, : YUyl X, N
1
Zibjpjt Z‘ibjpjt—l
i= i=

Rearranging terms in (A9) and recalling that ; = c(p; ,b)/ c(Pi_q ,b) with ¢(-) defined in (A1), we

can solve for b; as,

bi:[lJ( ASj jAlnPn TS Bt [50, =1, N, (A10)
k; )\ Alns; N pl —pl =l |5

Notice that (A10) determines b only up to a scalar multiple, so we are free to choose a

normalization on b . Specifying this normalization as zjlil b jpjy-t =1, we solve for k by multiplying

the right side of (A10) by p/, summing over i=1, ..., N, and rearranging terms:

N . .
klzyz[ As;; j[ InAp;; —Inm, J>O- (All)

1—=(pfi_, /p}) =



We can substitute (A11) into (A10) to obtain N equations in N unknowns, Ei for i=1,...,N. These

equations have the form:

-1

~ . . N As: Alnp., —Inn
bi:( Asiy j[Alnpn h”‘t} i Pjt ~ T >0, i=1,.,N. (A12)

Alns; piytfpth_l ! jzlAlnsjt 1f(pJYt_1/p}(t)nz

Recalling that ; = c(py, b)/ c(Pi_q ,b), these equations are highly nonlinear, but given any
arguments b > 0 within m; on the right of (A12), we determine a solution b*> 0 on the left. In
other words, (A12) provides a continuous mapping b* = F(E). Denote the set of parameters b>0
satisfying the normalization zgilgipiyt =1 as the simplex S. Choosing bes,itis readily verified
that b* €S, so F is a continuous mapping from S to S, and thus will have a fixed point. Then (A7)

holds by construction at this fixed point, so that (AS5) follows from (A6).

(iii) Next, we must show that Si evaluated as in (A10) lies between the bounds described in

Proposition 1. The cost shares s;; appearing in (A10) are evaluated as in (A2), but using bj;, with
T =t-1, t. Without loss of generality, we can normalize the price vectors p; by a scalar multiple in

each period so that c(p,b;) =1, T =t-1, t. We will drop the normalization on b that ZL Bip;/t =1,

and instead specify I.\l b.p! =k, >0. Denoting Bj = bj¢/bj.1, (A10) can then be written as,
i=1 lplt 2

-1
'B. —b. k_2 pg’t_piyt—lBi yAlnpit_ylnnt (A13a)
"k J{ vAlnpy +InB; )| pY —pl_ x
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From concavity of the natural log function we have 1 — (1/z) <Ilnz<z -1, for z> 0, and letting

z = Bi(pit /pit-1)" it follows that,
Y . Y
1—B;1(Mj < [lnBi +y1n(&ns B{&j 1. (A14)
Pit Pit-1 Pit-1

Notice that the last bracketed terms in (A13a, b) are the reciprocals of the previous

bracketed terms, but with B;j = by/bj;_| appearing instead of ;. Suppose that B; > n; . Using

(A14), we can show that:

-1
d [ Ph—PiiB | ) g 4| PEBiP |
dB; | InB; +yAlnp;, | dB; | nB; +yAlnp; |

It follows by comparing the bracketed terms in (A13) that:
n by (ky/kp)<b, <by (K, /ky) (A15)

while if B; < 7’ then these inequalities would be reversed. Express 7 . from (A5) as:

N YW N YWIN iy )T
m ZH(—plt j :H(_blt J H( - l;tl/y J ‘ (A16)
p

i=1\ Pit-1 i=1\bit_1 i=1\ Pit-1bji_;



A straightforward extension of (A1)-(A4) allowing for bj; # bji.; shows that the final product in

(A16) equals c(py, by)/c(pr.1,be.1). But this is unity by our normalization of prices, so that 7’ in
N N -1

(A16) equals [ [ (b; /bj;_;)"'. Then choose ks such that (ky/k;)=| [] b3’ Substituting this
i=1 i=1

into (A15), the bounds on b in Proposition 1 are obtained.

Proof of Proposition 2

Letb; denote the vector of the b;; from the CES model, let B; = Inb;; and let B, denote the
vector with components In bj;.. Also, to model stochastic tastes, let
Bic = Bi* + eir, (A17)
for t =t ort-1. The e;; are assumed to be iid with mean 0 and variance GBZ.
Let w and Aln p, represent vectors of the w; as in (8) and the log price changes, and let w*
denote the value of W when B, = B;= p*. Then,
var gy = E[(A In p)'(W — E(W))(W — E(W))'(A In p,)]
~ (A lnp)" E[(W—w*)(W—-w*)"] (A lnp,) (A18)

A linear approximation for W is:

W =~ W* + (8W/8Bt_1)et_1 + (8W/8Bt)et (A19)
where the derivative matrices are evaluated at the point B.; = ;= f*. In Lemma 1 below we show

that these derivatives approximately equal:

oWy1 /01 = ow, /0B, ~ L [diag(w*) — w* w*'] (A20)



where diag(w*) denotes the matrix with the elements W* on its main diagonal and zeros elsewhere.
Since E(e.; e) =0, it follows that,
E[(W — w*)(W — w*)'] = [diag(w*) — w* w*'] [E(e.e/) + E(ec €.1")][diag(w*) — w* w* ']

50, [diag(w*) — w* w*][diag(w*) — w* w*']. (A21)

Then substituting from (A21) into (A18) we obtain:

wi(Alnpy -7, )* . (A22)

Mz
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Lemma 1: An approximate formula for the derivatives of Sato-Vartia weights with respect to the
CES model disturbances is:
ow, /0B = ow, /o = %[diag(w*) —W* w*'] (A20)

Proof:

In section (a) below we show that the elements on the main diagonal of 6w, /8P, are of the
form 0.5w;(1-w;). Then in section (b) we show that ow, / OP¢.1 has off-diagonal elements of the form

—0.5w;w;. Furthermore, by symmetry ow,/dp, will have the same form as ow,/0B...

(i) Solution for ow;/ 0Pk for k = i. Denoting the logarithmic mean of the shares by m; =

(sit — sie1)/ In(sic /si 1), or siif si = s; 1, we have:

8Wi/8Bi,t_1 = (8Wi /8mi)(6mi /aln Si,t_l)(aln Si,t—l/aﬁi,t-l)

+ Zj::i (8wi/8mj)(8mj /0 1n Si,-1)(0 In sj 1 /0Bit1). (A23)

In the first term on the right side of (A23),



owi/om; = (1 —w;)/ 2 my (A24)

Also, since m; = (s, — Si.1)/ In(si¢ /i1,

om;/0 In i1 = (m; — sic1)/In(siy /Sip1). (A25)
it-1 Vit-1
i=1

N 1/(1-1)
Finally, since si.; = bi1p. "¢ where ¢ = (Zbit_lp%:}j ,

Oln Sit-1 /8 Bi,t—l =1- Si,t-1- (A27)

Substituting from (A24), (A25) and (A26) into the first term of (A23), we have:

(1 =wi)(m; —si0)(1 —sic1)
In(si¢ /sie-1)[ 20 K My ]

(OW; /0m;)(Om; /0In s; 1) (OInsi1/0Bis1) = (A28)

To find an expression for (Owi/0m;)(0m;/Olns;..1)(01nsj1/0Pir1), j # i, note first that,

ow;/om; = —w;i/[X  my]. (A29)
Also,
om;/0Insj 1= (mj — 8j.1)/ In(Sj/Sj11). (A30)
And finally,
Olnsj 1/0Bic1 = —Sic1. (A31)

Putting these three factors together gives:

Wi Sit1 mj — Sjt1
2Zemy 5 In(sie /i)

2. i+ (OW;i/0my)(0m; /0 Insj1)(0 Insj 1 /0Bir1) = (A32)

The two terms in (A23) therefore have a total of,



oW/ 0Bis = (1 =wi)(m; —sic)(1 =Sie1) = WiSitl m;j — Sj -1
VP In(si,¢ /sip-1)[2 « Mi] 2my 5 In(sje/sje1)
_ (A owi)mi—Sie)  _ Siei(Mi=Sie) | WiSiel 30 M Sied (A33)
In(sie/sie)[Zeme]  In(sig/sic)[2Zem]  Xemy T In(See/sier)
Since my approximately equals the midpoint between sy .1 and sk,
L Skel 0 5m, (A34)

ln(sk,t / Sk,t-l)

The overall error of approximation in the variance estimate for 7, from substituting from (A34)
into (A33) will be inconsequential, both because the individual errors are small and because they

are on average zZero. Hence:

(A =wi)(mi—sie1)  _ Sie(mi—sie) WiSitl my — Sk.i-1
In(sie/sie)[Zkmi]  In(sie/sie)[2Zrme]  2myg 5 In(ske/sker)

6wi /6Bi,t-1

05(1 _Wi)mi 0.5 Si t-1 IM; B
2 My S X my + 0.5wisier = 0.5(1-wi)wi. (A35)

Q

(ii) Solution for ow;/ 0Pk for k #1i. A change in Bk will affect w; by changing s; .1, by changing

Skt1, and by changing any remaining shares:

8Wi/aBk,t_1 = (awl/aml)(aml/c’i In Si,t_l)(a In Sit-1 /0 Bk,t—l)

+ (Owi/0mi)(Om;/0 In s 1)(0 In S .1 /0Pr1)

+ D (Owi/omy)(@m; /0 In sj,.1)(0 In 8j01/0Prir)- (A36)

j#iUk

The components of the first term on the right-side above are:
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8wi/8mi = (1 — Wl)/[Zk mk] (A37)
om;/Olnsi; = [m;—siei]/In(si/si1) (A38)
Oln Sit-1 /aﬁk,t_] = —Skt-1. (A39)

From (A34), [m;—sic1]/[In(si¢/sic1) {2k mg}]~0.5w;. Making this substitution,

(8w1/6m1)(6m1/8 In si,t_l)(ﬁln Si,t-1 /6 Bk,t-l) ~ —0.5 (I*Wi)wi Skt-1- (A40)

Next, decompose (Ow;/ 0my)(Om;/Oln sy 1 )(Oln sk 1 /0 Pk 1) as:

8wi/6mk = —Wj /[Zk mk] (A41)
omy/0In sy = [my — skt ] /In(Ske/ Ske1) (A42)
Oln sk,t_l/é Bk,t-l =1- Sk t-1- (A43)

Last, decompose . i#i Uk (OWi / Omy)(0m; /0 1n 8j4.1)(0 In 8j.1/0Pks1) as,

aWi/al’nj = —W; /[kak] (A44)
om;/0 Insje1 = [my—sje1]/n (8i¢/Sjs1) (A45)
Oln Sjt-1 /5 Bk7t-1 = —Skt-1. (A46)

Hence, substituting from (A41) to (A46) and summing the approximations for (Ow;/0my)(0m;/0 In

Sk1)(0 I s 1 /0Brs1) and 2 ji ok (OWi /0m;)(Om; /0 In sj,.1)(0 In s;01/0Px1) gives:

Zj;ti (6wi/8mj)(8mj /8 In Sj,t_l)(a In Sjt-1 /aﬁk,m) ~ 0.5 Wi Sk,t-1 [Zj;ﬁi W;j ] —0.5 Wi Wi

= 0.5 Wi Sk7t_1(1—Wi) —0.5 Wi Wxg. (A47)

The final step is to combine all the approximations for terms in Ow;/0 k1. This gives:
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aWi/aﬁk,H = (8Wi /ami)(ami /01n Si7t_1)(5 In Sit-1 /0 Bk,t-l) +

(6wl/8mk)(6mJ /6111 Sk,t_l)(a In Sk,t-1 /6 Bk,t-l) + z (Gwl /6mj)(6mj /6111 Sj,t_l)(a In Sj,t-l /6 Bk,t-l)

jiLk

~ —0.5(1-wij)w; Sk,t-1 T 0.5(1—wi)w; Ske-1 — 0.5wiwg = —0.5wywy. (A48)

Proof of Proposition 3

We prove a more general version of Proposition 3 than that stated in the text. In this version, we

suppose that regression (12) is run over goods i=1,...,N and periods t =1,...,T. In addition, we now

denote the weights in (8) by wj;, and the weighted variance of prices by s = 2.; wi(A In p;, — m,)".

Finally, let W=D witz(A Inp; — nt)z/ s¢ denote the weighted average of the wj; that has weights

proportional to wi(Aln p;, — nt)z. The more general version (which simplifies to equation (15) when

T=1)is:

Proposition 3':

Let W..= >, wi’, the weighted average of the wy that has weights wi, let &, =s,[X.s* ], and let

0= Ge18) [Wer W O [Zi Wiet (A In iy — mer) Wi A In py, — )] denote the autocorrelation of the
products wi(A In p;, — 7). Finally, denote the mean squared error of the generalized version of

regression (12) by s = . X wi &, where &, = Alns; —8, +(f—DAInp,,.
Then an approximately unbiased estimator sﬁz for cﬁz is:

2
S

— 2= - 2 — = 05+ " (15,)
2[T_th't _thtww +2Zt>17\’t—1;‘t(1_xt)pt(w't-lw't) 7]

2 _
SB_
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Formula (15") is only approximately unbiased because it treats the w;; as predetermined and
therefore nonstochastic.

Proof:

Replacing (1-n) in (12) with v, let €; be the fitted value of &, from:
Alns; = 8, + yAlnp;, + ¢, (12)
and let s =D, i wii &7, the weighted sum of squared errors of the regression equation (12).
Substituting from equation (A17) into equation (14) implies that €, = e — €jw1 — > i Wit(€jt — €j,1-1),
where e, and e; have variance Gﬁz . Furthermore, ;i wi[8; + 2; wilej — €j1)](Aln p;— ) =
[8: + 2 wiej — ei..) ][22 1 wi(Alnp;,— m)] = 0, so it follows that 2. ; wi(Aln s;)(Aln p;— ) =

v[2 i wiAln py— m)*] + 221 wi(eis — ei.1)(Aln p;,— ;). Consequently, a weighted least squares

estimator of y in equation (12) is:

. 2.1 2.1 Wit (Aln si)(Aln p;,— 7ty)
> 2 Wi (Alnpy— m)’

_ 4 PRI wit(e— ei,t—l)(Aln Pii— )
Y ¥ i Wit (Aln py— 1)

ZtZi At Wit ﬁit(eit— ei,t-l)
=Y + [ztStZ]O.S

(A49)

where s? = Y i wi(Aln py— 1), Ac=s/[2.s1", and P, = (Aln p,— m))/s.. The i regression error is:

&t = Alnsy— 7 (Alnp,— )
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= i — Cir1 — ) Wilejt— 1) — A Pid X e Ae [Z Wie Pieleie— €je-1)]

[1—wi(1+ A7 B )i — 1) — 2 joi Wi + A7 Py Bio)(eje — €jer)

- M 5it{z et Ay [zj Wit Pjr(€jc — ej,rfl)] } (AS0)

Since the ei;.; and the e;; have been assumed to be independent of one another,
E[(ei — €i1)’]1= 205 Also, E[(ei — eir1)(€ic — €ix1)]= —of if T=t+1 or t-1, but all other

covariances equal zero. For example, in case when t=1, we have:

E[&,1265 = (1-wia(1 + A7 D)) + Zawil(1+ A5 Py i) + AL P {1 A7 [2wid B}
+ [1 = wir(L+ A7 B ) Aide wia B Pia — 2 Win(L + A7 Py )haha wia 1D
— M P AZ =3 A At [2 (Wi B (Wit D) ]}
=1 2Wil(1 + 7\,12 ﬁilz) + ijl,...,Nlez(l + X]zﬁil ﬁil)z_’_ 7L12 5112 {Zr>1 7\412 [ZJ ij'r2 13}1:2]}

+ Mha Wi DB — Budida [Zwin(l + A/ BB Wiz Do

= 1-2w; — 2wy Al f)ilz +2 5wt + 207 Pl lezf)jl]
AP et A [ Wil 5]'12]} + Mk By wiz Pi
= Pl X winwia Bl — B A R [ 2 win B wia o]
= AP AZ =31 A At [ 2 (Wie Bj) (Wie1 B ] - (A51)

To express the weighted mean of the expected squares of the time period 1 regression errors

in a convenient way, let W.; denote Ziwitz ,and let w., denote a weighted average of the wj; that



14

has weights proportional to witﬁit. (That is, W..= 2 ; Wi (Alnplt )Y witl(Aln p;,— )’ )

Furthermore, define p, as the (unweighted) correlation between wj: pjc and w1 P; ;. We use the
following equalities to make substitutions:

~ 2
Ziwi =1, 2iwidy =1,
2 — =
zwlt Ew-ta z Wlt plt Ew.t,

]0.5

2iwiP =0, i Wit Pi e WitDie = pt[wt 1W.q

These substitutions give the result:
[XwiEBED]268 =1-Wa— 203 W + A7 [Zeoi

+ [ — 7\,137\.2] [~ i Wil Pjiwi IN)JQ]

=1]1-Ww. 1— 27\,1 W 1 + 7\.1 [ZT 1,..., 7\412 V:VT] + 7\,1(1—7\,12)7\,2 P2 [V:V.l\?f.z]o's (A52)

When 1 <t < T, the expression for E(&;” ) contains autocorrelations between both periods t—

1 and t and periods t+1 and t. Its derivation is as follows:

E[§.1205 = (1 - wi(1 + AP0 + Zja wid (1 + A8 By D)’

+ 7\42 Pit {z Tit?\‘ [ZJ VVJT2 5_]12]}
+ [1 = wil(1 + 7%2 ﬁitz)]Xtﬁit[xt-lwi,t-lﬁi,t—l + 7\'t+1wi,t+1§i,t+1]
— 2wl + 7\42 ﬁtﬁjt);‘t ﬁit[xt-le,t-l f’j,t-l + MWl ﬁj,tﬂ]

- Ktﬁit{Z w2 lutue A [ZJ (er ﬁif)(wj,‘r—l f)j,r_1)]}

= 1 2wi— 2Widd B + W+ 208 B[ X wid il

2~ 2

t2 ﬁlt2 {Z 7\' ? [ZJ Wir pjr ]}
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+ At ﬁit[xt-lwi,t-l Diet T A1 Wil ﬁi,m.]
- 7*3 5it2 {zj thf)jt [kt-le,t-l ﬁj,t—l + M1 Wil f’j,tﬂ] }
- Xtﬁit{Z lutut A [ZJ (thﬁjr)(wj,‘r—l f)j,r_1)]}- (A53)

Consequently, for 1 <t<T,

E[zl Witéitz]/zcﬁz =1- W.t— 27\42 \?’.t + 7\42[2-5 7\.-52 V:VT] + 7\4_17\4(1 —Ktz)pt[vzv.t_lvzv.t]o's

+ M2 1P [Wee w177, (A54)

Using the fact that YA = 1, the sum over all time periods is:

E[Zt i Witéitz]/zﬁpz =T-2W.— Z?xtz Wt

+ 2% 1 (LA W wa]™. (ASS)

The sum of squared errors > >.; wi&; divided by 2 times the right side of (A55) therefore has an

expected value of Gﬁz, which is the result in Proposition 3'.

Proof of Proposition 4

In this section we denote the vector of log price changes Aln p, by p, and assume that these

have a random error term of €”, which may be heteroskedastic. That is,
p= +e". (A56)
Denote the variance of p; by Giz and denote the estimate of this variance by siz. Although

an assumption that p; has a positive covariance with w; is appealing because positive shocks to b;

raise equilibrium market prices, it adds excessive complexity to the expression for var . (See
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Mood, Graybill and Boes, 1974, p. 180.) Hence, for the sake of simplicity, we will assume that the
shocks to prices are independent of the error term for preferences. We continue to assume that the
taste parameters are distributed as in (A17), now written as B, =B" + €., for T =t-1,t.

To obtain an estimator for the variance, we use the following linear approximation for w:

=
2

WY+ (OW/8B, ) ew + (OW/OB,)e,

Q

"+ Ge® (A57)
where pn" denotes the value of W when B, = B,=B*, 0W/0B,, and oOw/oPB, are evaluated at B, | =

B.= B" and are estimated by G = 0.5[diag(w) — ww’], and where " = e + e,. We then have,

Ty = WP ~ (1 +Ge"Y (W +e). (AS8)

Using the independence assumption to eliminate the expected values of cross-products of error

terms, we have:

E[ng’ - [E(ns)]’] = E(1"e”)’ + E(€"'G'WP)’ + E(€"'G'e")’. (A59)

To obtain an estimator for the first term on the right side of (A59), substitute w for pu* and s for

2
G;:

Ee’)’ = 2 (w0 ~ 2 wi's’ (A60)

Similarly, to obtain an estimator for E(e"'G'iP)?, substitute p for i and sﬁ2 for GBZZ

EE"GW) ~ %Gﬁzzi WiZ[MI; ~(wW' i) ~ %Sﬁzzi Wi (P — Tsy). (A61)
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To estimate the third term, note that E(e"'G'e?)? = E(e”’Ge" e"'G'eP) = 20[32 E(e”’GG'eP). Letting ¢
denote a vector equal to the main diagonal of GG’ and using the independence assumption to set the

expected value of the cross-product terms equal to zero gives,

EE”GGe) = [6] o, ... 6,09 (A62)
Letting W denote the vector of the w;* and noting that W'w = %, GG’ equals %[diag(wz) — (WHW'
—w(w?)' + w(ww')]. Hence, the i"™ element of g, equals %wiz(l +W-—2w;) and,

E(”GGe) = ;207w (1 +W—2w)). (A63)

Therefore,
E(e”Ge"eV'Ge’) = o5 2 o wi(l +W—2w)). (A64)

Finally, adding together the estimators for the three terms gives:
E[ny” - [Ema)]'] = X (") 0" + 305" X wi'(p = m)° + 305" 2 o7 wi'(l + W—-2w).  (A65)
We can estimate this expression by:
var T, & D, wizsi2 + %SBZZ wi(p;—n)* + %sﬁzz s2wi(l +W—2w),

S?,W N sﬁwasf(l+W—2wi)
41-W-W) 41-wW-Ww) '

(A66)

where the expression subsituted for SB2 comes from Proposition 3.

Note that equation (A66) is only an approximately unbiased, because the responses of
demand to price disturbances add a (presumably small) to additional component to the variances of

the w; that is ignored in (A66). Note also that in the special case where all prices have the same

distribution, so that si2 = sz/(l — W), the variance of the index may be estimated as:
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var e SIZ)W . sgszﬁ s sgsf)W(lJrW) ~ sﬁsiWZw? (A67)
VU -w) 41-w-w) 41-w-w)(1-W) 2(1-wW-w)1-W)
Proof of Proposition 5
Taking the log of (21), we obtain,
lnc(ptaa)_lnc(pt—laa)
1[N N N N N
=5 2. (o +oy DIy /py )+ 2 2 v Inpy Inpye — 20 2 viiInpie—y Inpji g
i=1 i=1j=1 i=1j=1
1[N N N
=5 2 (o +og (g /py )+ 22 vi(Inpy +Inpy_)(Inpj ~Inpj_;)
i=1 i=1j=1
1 [N
= | 2 G+ si-) Py /pic-) |5 (A68)
Li=1

where the second line follows by using the translog formula in (18), the third line using simple

algebra, and the final line follows from the share formula in (19).

Proof of Proposition 6

Proved in the main text.

Proof of Proposition 7

We now assume that In p,= p¥ + U;, where U is an error term with E(u;;) = 0 and uj
independent of uj; and uj,.;. Define p’ias p*—In p* ; and v, as u;— u.;. We assume that the it

element of v, has variance o;>. Then, letting " represent the matrix of the vii, from equation (21),
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1 1
w=a+;T(Inp+Inp,) + 3g+s.,)
= o+t %F(upt + Wi+ U+ U) F %(%*’ &.1)
e (A69)

where e; = %[F(ut +Ue1) + (51 ¢&.,)], E(er&') = Q, and E(g &.1') = pQ. Let X denote

E[(U¢+ Ue1)(U, + Ug1)" [, where the main diagonal of = equals the oi’ and its off-diagonal elements
equal 0 because the u;;are assumed to be independently distributed. We also assume that (U; + Uy.)
is independent of g and g _,. Hence, E(e;€{) = %FZF’ + %(H—p )Q.
The Tornqvist index, which we denote by 1, may be written as:
= (W +e) (W + vy

= HW’Hpt + uw'vt + upt! et+ etl Vi. (A70)

Note that E[(U — U.1)(g + &_,)' ] = 0 and that E(e/ vy) = 0. (E(e{Vy) = E[(U+ U )T’ + (5 + &) J(U,
— U.1), which equals 0 since E[y;; (ui¢ + u;e.1)(uje — uj.1)] = 0 for ij and vii” E(ui’ — ui1?) = 0.) It
follows that,
E(n) = p"'W (A71)
In addition, because the cross-products of the terms in (A70) have expected values of 0, we have
() — [E@]° = B 1) + EGE eced 1) + E[(e/ vo°. (A72)
We can substitute the following expressions for the terms in (A72) :

B wv 1) =2 (u%) o2 (A73)

1 1
E[Mpt'etet'kl?t] = Zp"grzr'ppt + Eupt'(l"‘P)QHpt (A74)
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To evaluate E[(ef Vt)z], note that E(ejviejivj) = 0 because vj is independent of the other terms in this

product. Also,

E[(eivi)’] = E{ [% [225 vii(uye + i) ](uie — i) + %(git + &i1)(Uic — ui,t-l)]z}

1 1
= 3072 v o] +3(02)(1+p)Q.
Hence,
E[(e/ v)’] = iZi oi’ [2 vi oi’] + %Zi (ci)(1+p)€i (A75)

where ;i represents the elements on the main diagonal of Q. Substituting (A73)- (A75) into (A72),

we have:
var(m) = X () 0 + i T'STYR + 5 (14p) W/QE,

+ 320l [ vitof] + 3(1+p)[X Qo] (A76)

To estimate var(m) using the expression in (A76), estimate p";, by wj;, estimate i’ by si%,
where s;> may be the sample variance for the log changes in the individual prices collected for item

i. In addition, p”, can be estimated by Aln pj, and I', p and Q can be estimated from regression
(24). Substituting 2 2 (Aln p)(Aln py) [k vivix si’] for ! T =T, an estimator for var(r) is,

then:

var(m) ~ )3 Wit2 Si2 + %Zi Zj (Aln py)(Aln pjt) [Zk YikYjk Skz]
+ 3 (1+p)(Aln py Q(Aln p)

+ 32 O 7] + 3+ Qis?l. (A77)
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In the case where all prices have the same trend and variance, we can estimate ;> by sz/(l —w) for

all 1. Then (A77) becomes:

var(m) ~ s W/(1-w) + 3[s2/(1 —w)] (Aln py TT(Alnp) + 3(1+p)(Aln p) Q(Aln py)

+ 3 20— [X %72 + 3 [s/(1 - W] +p)[Z Qi (A77")

where (Aln p)'TT(Alnp,) can be expressing as 2 2 (Aln p;)(Aln Pi0) [ 2ok Yadii-



