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Abstract

Empirically, high-interest-rate currencies tend to appreciate in the future relative
to low-interest-rate currencies instead of depreciating as uncovered interest rate parity
(UIP) states. The explanation for the UIP puzzle that I pursue in this paper is
that the agents’ beliefs are systematically distorted. This perspective receives some
support from an extended empirical literature using survey data. I construct a model of
exchange rate determination in which ambiguity-averse agents need to solve a filtering
problem to form forecasts but face signals about the time-varying hidden state that
are of uncertain precision. In the presence of such uncertainty, ambiguity-averse agents
take a worst-case evaluation of this precision and respond stronger to bad news than
to good news about the payoffs of their investment strategies. Importantly, because of
this endogenous systematic underestimation, agents in the next periods will perceive
on average positive innovations about the payoffs which will make them re-evaluate
upwards the profitability of the strategy. As a result, the model’s dynamics imply
significant ex-post departures from UIP as equilibrium outcomes. In addition to
providing a resolution to the UIP puzzle, the model predicts, consistent with the data,
positive profitability, negative skewness and excess kurtosis for payoffs of currency
speculation.
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1 Introduction

According to uncovered interest rate parity (UIP), periods when the domestic interest

rate is higher than the foreign interest rate should on average be followed by periods of

domestic currency depreciation. An implication of UIP is that a regression of realized

exchange rate changes on interest rate differentials should produce a coefficient of one. This

implication is strongly counterfactual. In practice, UIP regressions (Hansen and Hodrick

(1980), Fama (1984)) produce coefficient estimates well below one and sometimes even

negative.1 This anomaly is taken very seriously because the UIP equation is a property

of most open economy models. This failure, referred to as the UIP puzzle or the forward

premium puzzle2, implies that traders who borrow in low-interest-rate currencies and lend in

high-interest-rate currencies (a strategy known as the “carry trade”) make positive profits on

average. The standard approach in addressing the UIP puzzle has been to assume rational

expectations and time-varying risk premia. This approach has been criticized in two ways:

survey evidence has been used to cast doubt on the rational expectations assumption3 and

other empirical research challenges the risk implications of the analysis.4

In this paper, I follow a conjecture in the literature that the key to understanding the UIP

puzzle lies in departing from the rational expectations assumption.5 I pursue this conjecture

formally, using the assumption that agents are not endowed with complete knowledge of the

true data generating process (DGP) and that they confront this uncertainty with ambiguity

aversion. I model ambiguity aversion along the lines of the maxmin expected utility (or

multiple priors) preferences as in Gilboa and Schmeidler (1989).

I present a model of exchange rate determination which features signal extraction by

an ambiguity averse agent that is uncertain about the precision of the signals she receives.

The only source of randomness in the environment is the domestic/foreign interest rate

differential. I model this as an exogenous stochastic process, which is the sum of unobserved

1Among recent studies see Chinn and Frankel (2002), Gourinchas and Tornell (2004), Chinn and Meredith
(2005), Verdelhan (2008) and Burnside et al. (2008).

2Under covered interest rate parity the interest rate differential equals the forward discount. The UIP
puzzle can then be restated as the observation that currencies at a forward discount tend to appreciate.

3For example, Froot and Frankel (1989), Chinn and Frankel (2002) and Bacchetta et al. (2008) find that
most of the predictability of currency excess returns is due to expectational errors.

4See Lewis (1995) and Engel (1996) for surveys on this research. See Burnside et al. (2008) for a critical
review of recent risk-based explanations. These criticisms are by no means definitive as there is a recent
risk-based theoretical literature, including for example Verdelhan (2008), Bansal and Shaliastovich (2007),
Alvarez et al. (2008) and Farhi and Gabaix (2008) that argues that the typical empirical exercises are unable
by construction to capture the underlying time-variation in risk.

5Froot and Thaler (1990), Eichenbaum and Evans (1995), Lyons (2001), Gourinchas and Tornell (2004)
and Bacchetta and van Wincoop (2009) argue that models where agents are slow to respond to news may
explain the UIP puzzle.
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persistent and transitory components. I assume that the agent does not know the variances of

the innovations in the temporary and persistent components and she allows for the possibility

that those variances change over time. In other words, the agent perceives the signals she

receives about the hidden persistent state as having uncertain precision or quality.6 Under

ambiguity aversion with maxmin expected utility, the agent simultaneously chooses a belief

about the model parameter values and a decision about how many bonds to buy and sell.

The bond decision maximizes expected utility subject to the chosen belief and the budget

constraint. The belief is chosen so that, conditional on the agent’s bond decision, expected

utility is minimized subject to a particular constraint. The constraint is that the agent only

considers an exogenously-specified finite set of values for the variances. I choose this set so

that, in equilibrium, the variance parameters selected by the agent are not implausible in a

likelihood ratio sense.

In equilibrium, the agent invests in the higher interest rate bond (investment currency)

by borrowing in the lower interest rate bond (funding currency). The larger the estimate of

the hidden state of the investment differential, i.e. the differential between the high-interest-

rate and the low-interest-rate, the larger is her demand for this strategy is. Conditional on

this decision, the agent’s expected utility is decreasing in the expected future depreciation

of the investment currency. In equilibrium, this depreciation will be stronger when the

future demand for the investment currency is lower. Thus, the agent is concerned that the

observed investment differential in the future is low which makes the agent worry that the

estimate of the hidden state of the investment differential is low. As a result, the initial

concern for a depreciation translates into the agent tending to underestimate, compared to

the true DGP, the hidden state of this differential. When faced with signals of uncertain

precision, ambiguity averse agents act cautiously and underestimate the hidden state by

reacting asymmetrically to news: they believe that it is more likely that observed increases

in the investment differential have been generated by temporary shocks (low precision of

signals) while decreases as reflecting more persistent shocks (high precision of signals).7 The

UIP condition holds ex-ante under these endogenously pessimistic beliefs.

Because the agent underestimates, compared to the true DGP, the persistent component

of the investment differential she is, on average, surprised next period by observing a

higher investment differential than expected. Under her equilibrium subjective beliefs, these

innovations are unexpected good news that increase the estimate of the hidden state. This

6The structure of uncertainty that I investigate, namely signals of uncertain precision, is similar to Epstein
and Schneider (2007, 2008). The main difference is that here I consider time-varying hidden states, which
generates important dynamics, while their model analyzes a constant hidden parameter.

7This asymmetric response to news has been investigated in a static filtering environment by Epstein and
Schneider (2008) and Illeditsch (2009).
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updating effect creates the possibility that next period the agent finds it optimal to invest

even more in the investment currency because this higher estimate raises the present value

of the future payoffs of investing in the higher interest rate bond. The increased demand

will drive up the value of the investment currency contributing to a possible appreciation of

the investment currency. Thus, an investment currency could see a subsequent equilibrium

appreciation instead of a depreciation as UIP predicts.

The main result of this paper is that such a model of exchange rate determination has

the potential to resolve the UIP puzzle. Indeed, for the benchmark calibration, numerical

simulations show that in large samples the UIP regression coefficient is negative and statis-

tically significant while in small samples it is mostly negative and statistically not different

from zero. The model is based on maximum likelihood estimates of interest rate differentials

for developed countries which suggest a high degree of persistence of the hidden state and a

large signal to noise ratio for the true DGP. In the benchmark specification, I impose some

restrictions on the frequency and magnitudes of the distortions that the agent is considering

so that the equilibrium distorted sequence of variances is difficult to distinguish statistically

from the true DGP based on a likelihood comparison.8 Studying other parameterizations, I

find that the UIP regression coefficient becomes positive, even though smaller than one, if

the true DGP is characterized by a significantly less persistent hidden state or much larger

temporary shocks than the benchmark specification.

The gradual incorporation of good news implied by this model can directly account also

for the delayed overshooting puzzle. This is an empirically documented impulse response

in which following a positive shock to the domestic interest rate the domestic currency

experiences a gradual appreciation for several periods instead of an immediate appreciation

and then a path of depreciation as UIP implies.9 For such an experiment, the ambiguity

averse agent invests in the domestic currency in equilibrium and thus is worried about its

future depreciation. The equilibrium beliefs then imply that the agent tends to overweigh,

compared to the true DGP, the possibility that the observed increase in the interest rate

reflects the temporary shock. This leads to an underestimation of the hidden state and

generates a gradual incorporation of the initial shock into the estimate and the demand of

the ambiguity-averse agent. The gradual incorporation of news can generate the gradual

appreciation of the high-interest-rate currency.

The intuition for the model’s ability to explain the UIP puzzle is related to Gourinchas

8Eliminating these constraints would qualitatively maintain the same intuition and generate stronger
quantitative results at the expense of the agent seeming less interested in the statistical plausibility of her
distorted beliefs.

9See Eichenbaum and Evans (1995), Grilli and Roubini (1996), Faust and Rogers (2003) and Scholl and
Uhlig (2006).
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and Tornell (2004) who show that if, for some unspecified reason, the agent systematically

underreacts to signals about the time-varying hidden-state of the interest rate differential this

can explain the UIP and the delayed overshooting puzzle. The main difference is that here

I investigate a model which addresses the origin and optimality of such beliefs. This model

generates endogenous underreaction only to good news, with the agent in fact overreacting

to bad news. As an alternative model to generate an endogenous slow response to news,

Bacchetta and van Wincoop (2009) use ideas from the rational inattention literature. In

their setup, since information is costly to acquire and to process, some investors optimally

choose to be inattentive and revise their portfolios infrequently. Their model also implies

that agents respond symmetrically to news.

The explanation for the UIP puzzle proposed in this paper relies on placing structure

on the type of uncertainty that the agent is concerned about. The agent receives signals of

uncertain precision about a time-varying hidden state but otherwise she trusts the other

elements of her representation of the DGP. Because of the structured uncertainty, the

equilibrium distorted belief is not equivalent to the belief generated by simply increasing

the risk aversion and using the rational expectations assumption.

Besides providing an explanation for the UIP puzzle, the theory for exchange rate

determination proposed in this paper has several implications for the carry trade. First,

directly related to the resolution of the UIP puzzle, the benchmark calibration produces, as

in the data, positive average payoffs for the carry trade strategy. Compared to the empirical

evidence, the model implied payoffs are smaller and less variable. The model generates

positive average payoffs because in equilibrium the subjective probability distribution differs

from the objective one by overpredicting bad events and underpredicting good events.

Second, the model implies that carry trade payoffs are characterized by negative skewness

and excess kurtosis. This is consistent with the data as recent evidence (Brunnermeier

et al. (2008)) suggests that high interest rate currencies tend to appreciate slowly but

depreciate suddenly. In my model, an increase in the high-interest-rate compared to the

market’s expectation produces, relative to rational expectations, a slower appreciation of

the investment currency since agents underreact to this type of innovations. However, a

decrease in the high interest rate generates a relatively sudden depreciation because agents

respond quickly to that type of news.10 The excess kurtosis is a manifestation of this

diminished reaction to good news. The asymmetric response to news is also consistent with

the high frequency reaction of exchange rates to fundamentals documented in Andersen et al.

10Brunnermeier et al. (2008) argue that the data suggests that the realized skewness is related to the rapid
unwinding of currency positions, a feature that is replicated by my model. They propose shocks to funding
liquidity as a mechanism for this endogeneity.
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(2003). The theory presented in this paper is also consistent with recent empirical findings

documented in Jurek (2008) about the conditional time-variation of the payoff’s skewness

for currency trading.

Third, the model has strong implications for modified carry trade strategies that can

improve their ex-post profitability by delivering higher Sharpe ratios. Intuitively, because

the equilibrium in the model is characterized by a gradual incorporation of “good news”,

positive innovations in the investment differential will make the investment currency more

likely to appreciate ex-post. In fact, the greater the positive innovations are, the higher the

likelihood is of observing ex-post positive payoffs for the strategy. To test these implications,

I implement empirically such modified carry trade strategies by following the rule that

that the agent invests in the higher interest rate currency when the innovation in the

investment differential is above a specific non-negative threshold. I find that in the data

such strategies deliver significantly higher Sharpe ratios. Moreover, as predicted by the

model, the empirical average ex-post profitability is increasing in the threshold used for

conditioning the investment strategy.

The remainder of the paper is organized as follows. Section 2 describes and discusses

the model. Section 3 presents a rational expectations version of the model to be contrasted

against the ambiguity averse version studied in Section 4. Section 5 presents the model

implications for exchange rate determination and discusses alternative specifications. Section

6 concludes. In the Appendix, I provide details on some of the model’s equations and

statements.

2 Model

2.1 Basic Setup

The basic setup is a typical one good, two-country, dynamic general equilibrium model of

exchange rate determination. The focus is to keep the model as simple as possible while

retaining the key ingredients needed to highlight the role of ambiguity aversion and signal

extraction. For that purpose I will start with a model of risk-neutral, but otherwise ambiguity

averse agents.

There are overlapping generations (OLG) of investors who each live two periods, derive

utility from end-of-life wealth and are born with zero endowment. There is one good for

which purchasing power parity (PPP) holds: pt = p∗t + st, where pt is the log of price level of

the good in the Home country and st is the log of the nominal exchange rate defined as the

price of the Home currency per unit of foreign currency (FCU). Foreign country variables
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are indicated with a star. There are one-period nominal bonds in both currencies issued by

the respective governments. Domestic and foreign bonds are in fixed supply in the domestic

and foreign currency respectively.

The Home and Foreign nominal interest rates are it and i∗t respectively. The exogenous

process is the interest rate differential rt = it − i∗t . The true DGP is the state-space model:

rt = xt + σV vt (2.1)

xt = ρxt−1 + σUut

The shocks ut and vt are both Gaussian white noise. Thus, at time t the observable differential

rt is the sum of a hidden unobservable persistent component, xt, and a temporary component,

σV vt. The agent entertains the possibility that the true DGP lies in a set of models (i.e.

probability distributions over outcomes). The specific assumptions about the subjective

beliefs of the agents regarding this process are covered in the next section.

Investors born at time t have are risk-neutral over end-of-life wealth, Wt+1, and face

a convex cost of capital. In a later section I will address some of the implications of

incorporating risk aversion. Their maxmin expected utility at time t is:

Vt = max
bt

min
P̃∈Λ

EP̃
t [(Wt+1 −

c

2
b2
t )|It] (2.2)

where It is the information available at time t, bt is the amount of foreign bonds invested

and c controls the cost of capital. Agents have a zero endowment and pursue a zero-cost

investment strategy: borrowing in one currency and lending in another. Since PPP holds,

Foreign and Home investors face the same real returns and therefore will choose the same

portfolio.

The set Λ comprises the alternative probability distributions available to the agent. The

agent decides which of the the distributions (models) in the set Λ to use in forming their

subjective beliefs about the future exchange rate. I postpone the discussion about the

optimization over these beliefs to the next sections, noting that the optimal choice for bt is

made under the subjective probability distribution P̃ .

The amount bt is expressed in domestic currency (USD). To illustrate the investment

position suppose that bt is positive. That means that the agent has borrowed bt in the

domestic currency and obtains bt
1
St

FCU units, where St = est . This amount is then invested

in foreign bonds and generates bt
1
St

exp(i∗t ) of FCU units at time t+1. At time t+1, the agent

has to repay the interest bearing amount of bt exp(it). Thus, the agent has to exchange back

the time t + 1 proceeds from FCU into USD and obtains bt
St+1

St
exp(i∗t ). The net end-of-life
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wealth is then a function of the amount of bonds invested and the excess return:

Wt+1 = bt exp(it)[exp(st+1 − st + i∗t − it)− 1]

An approximation around the steady state of it = i∗t = 0 and st+1− st = 0 allows the net

end-of-life wealth to be rewritten in the more tractable form:

Wt+1 = bt[st+1 − st − (it − i∗t )]

To close the model, I specify a Foreign bond market clearing condition similar to

Bacchetta and van Wincoop (2009). There is a fixed supply B of Foreign bonds in the

Foreign currency. In the steady state, the investor holds no assets since she has a zero

endowment. The steady state amount of bonds is held every period by some unspecified

traders. They can be interpreted as liquidity traders that have a constant bond demand.

The real supply of Foreign bonds is Be−p
∗
t = Best where the Home price level is normalized

at one. I also normalize the steady state log exchange rate to zero. Thus, the market clearing

condition is:

bt = Best −B (2.3)

where B is the steady state amount of Foreign bonds. Following Bacchetta and van Wincoop

(2009) I also set B = 0.5, corresponding to a two-country setup with half of the assets

supplied domestically and the other half supplied by the rest of the world. By log-linearizing

the RHS of (2.3) around steady state I get the market clearing condition:

bt = .5st (2.4)

2.2 Model uncertainty

In this paper, the key departure from the standard framework of rational expectations is

that I drop the assumption that the shock processes are random variables with known

probability distributions. The agent will entertain various possibilities for the data generating

process (DGP). She will choose, given the constraints, an optimally distorted distribution

for the exogenous process. I will refer to this distribution as the distorted model. The

objective probability distribution (the true DGP) is assumed to be the constant volatility

state-space representation for the exogenous process rt defined in (2.1). As in the model of

multiple priors (or MaxMin Expected Utility) of Gilboa and Schmeidler (1989), the agent
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chooses beliefs about the stochastic process that induce the lowest expected utility under

that subjective probability distribution. The minimization is constrained by a particular

set of possible distortions because otherwise the agent would select infinitely pessimistic

probability distributions. Besides beliefs, the agent also selects actions that, under these

worst-case scenario beliefs, maximize expected utility.

In the present context the maximizing choice is over the amount of foreign bonds that

the agents is deciding to hold, while the minimization is over elements of the set Λ that the

agent entertains as possible. The set Λ dictates how I constrain the problem of choosing an

optimally distorted model. The type of uncertainty that I investigate is similar to Epstein

and Schneider (2007, 2008), except that here I consider time-varying hidden states, while

their model analyzes a constant hidden parameter. The agent believes that the standard

deviation of the temporary shock is potentially time-varying and is drawn every period from

a set Υ. Typical of ambiguity aversion frameworks, the agent’s uncertainty manifests in

her cautious approach of not placing probabilities on this set. Every period she thinks that

any draw can be made out of this set. The agent trusts the remaining elements of the

representation in (2.1). Thus the agent uses the following state-space representation:

rt = xt + σV,tvt (2.5)

xt = ρxt−1 + σUut

where vt and ut are both Gaussian white noise and σV,t are draws from the set Υ.

The information set is It = {rt−s, s = 0, ..., t}. Using different realizations for the σV,s

for various dates s ≤ t will imply different posteriors about the hidden state xt and the

future distribution for rt+j, j > 0. In equation (2.2) the unknown variable at time t is the

realized exchange rate next period. This endogenous variable will depend in equilibrium on

the probability distribution for the exogenous interest rate differential. Thus in choosing her

pessimistic belief the agent will imagine what could be the worst-case realizations for σV,s,

s ≤ t, for the data that she observes. This minimization then reduces to selecting a sequence

of

σtV = {σV,s, s ≤ t : σV,s ∈ Υ} (2.6)

in the product space Υt : Υ×Υ...Υ. As in Epstein and Schneider (2007), the agent interprets

this sequence as a “theory” of how the data were generated.11 The optimization in (2.2)

11Note that the distorted model is not a constant volatility model with a different value for the standard
deviation of the shocks than the reference model. Although this possibility is implicitly nested in the setup,
the optimal choice will likely be different because sequences with time variation will induce a lower utility
for the agent.
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then becomes:

Vt = max
bt

min
σ∗V (rt)∈σt

V

EP̃
t [(Wt+1 −

c

2
b2
t )|It] (2.7)

where P̃ still denotes the subjective probability distribution implied by the known elements

of the DGP and the distorted optimal sequence σ∗V (rt). The latter is a function of time t

information which is represented by the history of observables rt.

For simplicity, I consider the case in which the set Υ contains only three elements:

σLV < σV < σHV . As in Epstein and Schneider (2007), to control how different the distorted

model is from the true DGP, I include the value σV in the set Υ.12 I will refer to the sequence

σtV = {σV,s = σV , s ≤ t} as the reference model, or reference sequence. The set Υ contains

a lower and a higher value than σV to allow for the possibility that for some dates s the

realization σV,s induces a higher or lower precision of the signal about the hidden state.

Given the structure of the model, the worst-case choice is monotonic in the values of the set

Υ. Thus, it suffices to consider only the lower and upper bounds of this set.13

The proposed structure of uncertainty makes the resulting ambiguity aversion equilibrium

observationally non-equivalent to an expected utility model but higher risk aversion. The

literature on optimal control has shown that simply invoking robustness reduces in some

cases to solving the model under expected utility but with a higher risk aversion.14 Hansen

(2007), Hansen and Sargent (2007), Hansen and Sargent (2008a) and Ju and Miao (2009)

show that, in general, a concern for misspecification in the hidden state of the process breaks

this link and produces qualitatively different dynamics than simply increasing risk aversion.

The setup proposed in this paper can be viewed as an example of such dynamics.

Here the concern for possible misspecification is over the variance of the shocks, which can

be thought of as a latent unobserved state, a layer deeper than the hidden state xt. It is worth

noting however that in this model introducing a concern for the uncertainty surrounding rt

and xt, without any further structure on that uncertainty is still equivalent to simply using

expected utility and a higher risk aversion.15 In Appendix A I present some details for this

equivalence in this model. As I show in Section 5.1, higher risk aversion combined with

12This does not necessarily imply that σV is a priori known. If the agent uses maximum likelihood for a
constant volatility model, her point estimate would be asymptotically σV .

13A more complicated version of the setup could be to have stochastic volatility with known probabilities
of the draws as the reference model. The distorted set will then refer to the unwillingness of the agent to
trust those probabilities. As above, she will then place time-varying probabilities on these draws. Similar
intuition would then apply.

14See among others Whittle (1981), Strzalecki (2007) and Barillas et al. (2009).
15In the general setup of Hansen and Sargent (2008a) the structured uncertainty proposed here is over

“models”, controlled by the alternative sequences of variances σt
V , each implying a different evolution for

the hidden state xt. When uncertainty is directly over xt, (the T2 operator in Hansen and Sargent (2008a))
or over rt (the T1 operator in Hansen and Sargent (2008a)) a multiplier preference as in Hansen and Sargent
(2008b) reduces in this model to expected utility and a higher risk aversion.
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rational expectations does not provide an explanation for the puzzles in a simple mean-

variance setup. I then conclude that the type of uncertainty studied in this paper, of signals

with uncertain precision produces, in the simple model analyzed here, dynamics that are

qualitatively different from the ones obtained with unstructured uncertainty or expected

utility but higher risk aversion.

2.3 Statistical constraint on possible distortions

An important question that arises in this setup is how easy it is to distinguish statistically the

optimal distorted sequence from the reference one. The robust control literature approaches

this problem by using the multiplier preferences in which the distorted model is effectively

constrained by a measure of relative entropy to be in some distance of the reference model.

The ambiguity aversion models also constrain the minimization by imposing some cost

function on this distance.16 Without some sort of penalty for choosing an alternative model,

the agent would select an infinitely pessimistic belief.

I also impose this constraint to avoid the situation in which the implied distorted sequence

results in a very unlikely interpretation of the data compared to the true reference model.

To quantify the statistical distance between the two models I use a comparison between the

log-likelihood of a sample {rt} computed under the reference sequence, LDGP (rt), and under

the distorted optimal sequence, LDist(rt). This distance will be increasing in the number of

dates s for which the distorted sequence σ∗tV = {σV,s, s ≤ t : σV,s ∈ Υ} is different from the

true sequence σtV = {σV,s = σV , s ≤ t}.
Taking as given a desired average statistical performance of the distorted model and given

the set Υ, the constraint effectively restricts the elements in the sequence σtV to be different

from the reference model only for a constant number n of dates. Intuitively, if n is low then

the two sequences will produce relatively close likelihoods for the sample rt even though the

sample is increasing with t. For example if n = 2, as in the main parameterization, it means

that the agent, who is interested in the statistical plausibility of her alternative model,17

chooses only two dates when she is concerned that the realizations of σV,t differ from σV .

This approach of setting n low can also be interpreted as the agent viewing the possible

alternative realizations in σtV as ”rare events” compared to the ”normal” times of having

σV,s = σV .

16See Anderson et al. (2003), Maccheroni et al. (2006) and Hansen and Sargent (2008b) among others.
17Clearly, the detection error probability is not directly a measure of the level of the agent’s uncertainty

aversion but only a tool to assess its statistical plausibility. For a discussion on how to recover in general
ambiguity aversion from experiments see Strzalecki (2007). For a GMM estimation of the ambiguity aversion
parameter for the multiplier preferences see Benigno (2007) and Kleshchelski and Vincent (2007).
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For future reference let the restricted sequence be denoted by σtV (rt) :

σtV (rt) = {σV,s}s≤t, σtV (rt) ∈ {Υn × σV × ...× σV } (2.8)

The notation σtV (rt) ∈ {Υn × σV × ... × σV } reflects the fact that σtV (rt) belongs in the

product space {Υ× ...×Υ︸ ︷︷ ︸
n times

× σV × ...× σV︸ ︷︷ ︸
t−n times

}

Part of the optimization over the distorted sequence can be thought of selecting an order

out of possible permutations. Let P (t, n) denote the number of possible permutations where

t is the number of elements available for selection and n is the number of elements to be

selected. This order controls the dates at which the agent is entertaining values of the

realized standard deviation that are different than σV . After selecting this order the rest

of the sequence consists of elements equal to σV . As P (t, n) = t!/(t − n)!, this number of

possible permutations increases significantly with the sample size. The solution described in

Section 4.1 shows that the effective number is in fact smaller when the decision rule over this

choice takes into account optimality considerations over the element of Υ to be chosen at

each date. When the agent is considering distorting a past date she will choose low precision

of the signal if that period’s innovation is good news for her investment and high precision if

it is bad news. Moreover, as discussed later, when the true σV = 0 it can be shown that the

agent finds it optimally to distort only the last n periods and have the rest of the sequence

consist of elements equal to σV .

2.4 Equilibrium concept

I consider an equilibrium concept analogous to a fully revealing rational expectations equi-

librium, in which the price reveals all the information available to agents. Let {rt} denote

the history of observed interest rate differentials up to time t, {rs}s=0,...t. Denote by σ∗V (rt)

the optimal sequence σtV of {σV,s, s ≤ t : σV,s ∈ Υ} chosen by the agent at time t based on

data {rt} to reflect her belief in an alternative time-varying model. Let f (rt+1) denote the

time-invariant function that controls the conjecture about how next period’s exchange rate

responds to the history {rt+1}
st+1 = f(rt+1)

For a reminder, equation (2.7) is the optimization problem faced by the agent that

involves both a maximizing choice over bonds and minimizing solution for the distorted

model.

Definition 1. An equilibrium will consist of a conjecture f(rt+1), an exchange rate function

s(rt), a bond demand function b(rt) and an optimal distorted sequence σ∗V (rt) for {rt},
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t = 0, 1, ...∞ such that agents at time t use the distorted model implied by the sequence

of variances σ∗V (rt) for the state-space defined in (2.5) to form a subjective probability dis-

tribution over rt+1 = {rt, rt+1} and f(rt+1) and satisfy the following equilibrium conditions:

1. Optimality: given s(rt) and f(rt+1), the demand for bonds b(rt) and the distorted

sequence σ∗V (rt) are the optimal solution for the max min problem in (2.7).

2. Market clearing: given b(rt), σ∗V (rt) and f(rt+1), the exchange rate s(rt) satisfies the

market clearing condition in (2.4).

3. Consistency of beliefs: s(rt) = f(rt).

3 The Rational Expectations Model Solution

Before presenting the solution to the model, I first solve the rational expectations version

which will serve as a contrast for the ambiguity aversion model. By definition, in the rational

expectations case the subjective and the objective probability distributions coincide, i.e. P

=P̃ . For ease of notation, I denote Et(X) ≡ EP
t (X), where P is the true probability

distribution. The DGP is given by the constant volatility state-space described in (2.1).

The optimization problem is

Vt = max
bt

Et[(btqt+1 −
c

2
b2
t )]

where the log excess return qt+1 = st+1 − st − rt and bt is the amount of foreign bonds

demanded expressed in domestic currency. The FOC is

bt =
Et(qt+1)

c
(3.1)

The market clearing condition states that bt = 0.5st. Combining the demand and the supply

equation I get the equilibrium condition for the exchange rate:

st =
Et(st+1 − rt)

1 + 0.5c
(3.2)

I call (3.2) the UIP condition in the rational expectations version of the model. Driving c to

zero implies the usual risk-neutral version st = Et(st+1 − rt).
It is easy to see that the solution in (3.1) can accommodate the risk aversion case, where:

Vt = max
bt

btEtqt+1 − γb2
tV artqt+1

12



Replacing c with γV artqt+1 in (3.1) delivers the usual solution for a mean variance utility.

To solve the model, I take the usual approach of a guess and verify method in which the

agents are endowed with a guess about the law of motion of the exchange rate. To form

expectations agents use the Kalman Filter which, given the Gaussian and linear setup is the

optimal filter for the state-space in (2.1).

Let x̂m,n ≡ E(xm|In) and Σm,n ≡ E[(xm−E(xm|In))(xm−E(xm|In)′] denote the estimate

and the mean square error of the hidden state for time m given information at time n. As

shown in Hamilton (1994), the estimates are updated according to the following recursion:

x̂t,t = ρx̂t−1,t−1 +Kt(yt − ρx̂t−1,t−1) (3.3)

Kt = (ρ2Σt−1,t−1 + σ2
U)[ρ2Σt−1,t−1 + σ2

U + σ2
V ]−1 (3.4)

Σt,t = (1−Kt)(ρ
2Σt−1,t−1 + σ2

U) (3.5)

where Kt is the Kalman gain.

Based on these estimates let the guess about the exchange rate be

st = a1x̂t,t + a2rt (3.6)

For simplicity, I assume convergence on the Kalman gain and the variance matrix Σt,t. Thus,

I have Σt,t ≡ Σ and KRE
t = K for all t. Then, since Etrt+1 = ρx̂t,t the solution is

a2 = − 1

1 + 0.5c
(3.7)

a1 = − 1

1 + 0.5c

ρ

1 + 0.5c− ρ
(3.8)

For the case in which c = 0, a1 = − ρ
1−ρ , a2 = −1. Notice that when ρ is close to one

it implies that a1 is very large. This is consistent with the “asset” view of the exchange

rate. The exchange rate st is the negative of the present discounted sum of the interest rate

differential. Since the interest rate differential is highly persistent, a1 will be a large negative

number. It shows that st reacts strongly to the estimate of the hidden state x̂t,t because this

estimate is the best forecast for future interest rates.

The UIP regression is

st+1 − st = βrt + εt+1

In this rational expectations model the dependent variable is

st+1 − st = a1(ρ− 1)x̂t,t + a1K(rt+1 − ρx̂t,t) + a2(ρx̂t,t + ξt + σUut+1 + σV vt+1 − rt) (3.9)
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where ξt = xt − x̂t,t with ξt ∼ N(0,Σ) and independent of time t information. Then taking

expectations of (3.9) and using that E(εt+1|It) = 0, I get

Et(st+1)− st = −x̂t,t
.5ρc

(1 + .5c)((1 + .5c− ρ)
+

1

1 + .5c
rt

Since cov(x̂t,t, rt) = Kvar(rt), the UIP coefficient is

β̂ = − .5ρcK

(1 + .5c)(1 + .5c− ρ)
+

1

1 + .5c
(3.10)

In the case of c = 0, β̂ = 1 as the UIP predicts. When c = γV arqt+1, β̂ < 1 due to the

existence of a rational expectations risk premium in that model.

4 The Ambiguity Aversion Model Solution

In presenting the solution I use the constraints on the sequence σV (rt) described in Section

2.3, which follow from the requirement that the distorted sequence is statistically plausible.

There I argue that this implies that the agent is statistically forced to be concerned only

about a constant number n of dates that differ from σV . It is important to emphasize that I

impose the restriction on the distorted sequence to differ from the reference model only for

few dates purely for reasons related to statistical plausibility. The same intuition applies if

the agent is not constrained by this consideration. I will return to this point, and I also note

that under some conditions whether n is constant or equal to the sample size t is irrelevant.

Note that for a given deterministic sequence σ∗V (rt) = {σV,s, s = 0, ...t} selected in (2.7)

the usual recursive Kalman Filter applies. Thus, after this sequence has been optimally

chosen by the agent at date t, the recursive filter uses the data from 0 to t to form estimates

of the hidden state and their MSE. As shown in Hamilton (1992) the estimates are updated

according to the recursion in (3.3), (3.5). The difference with the constant volatility case is

that the Kalman gain now incorporates the time-varying volatilities σ2
V,t:

Kt = (ρ2Σt−1,t−1 + σ2
U)[ρ2Σt−1,t−1 + σ2

U + σ2
V,t]
−1 (4.1)

The above notation is not fully satisfactory because it does not keep track of the dependence

of the solution σ∗V (rt) on the time t that is obtained. To correct this I make use of the

following notation: σV,(t),s is the value for the standard deviation of the observation shock

that was believed at time t to happen at time s. The subscript t in parentheses refers to the
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period in which the minimization takes place and the subscript s ≤ t refers to the period in

the observed sample 0, .., t at which the draw for the standard deviation was believed to be

equal to σV,(t),s.

Such a notation is necessary to underline that the belief is an action taken at date t

and thus a function of date t information. There is the possibility that the belief about the

realization of the variance at date s is different at dates t− 1 and t. This can be interpreted

as an update, although not Bayesian in nature.

To keep track of this notation I denote by: I ti = {rs, H, F, σU , σV,(t),s, s = 0, ..., i} for

i ≤ t the information set that the filtering problem has at time i by treating the sequence

{σV,(t),s}s=0,...,i as known. Note that this sequence is optimally selected at date t. This

notation highlights that the filtering problem is backward-looking based on a deterministic

sequence {σV,(t),s}s=0,...,i. Then for i ≤ t:

x̂ti,i = E(xi|I ti ) = x̂ti−1,i−1 +Kt
i (ri − x̂ti−1,i−1)

Σt
i,i = E[(xti − x̂ti,i)2|I ti ] (4.2)

Kt
i = (ρ2Σt

i−1,i−1 + σ2
U)[ρ2Σt

i−1,i−1 + σ2
U + σ2

V,(t),i−1]−1 (4.3)

Thus x̂ti,i is the estimate of the time i hidden state based on the sample {rs}s=0,...,i and Kt
i

is the time i Kalman gain by treating the sequence {σV,(t),s}s=0,...,i as known.

4.1 The optimal distorted expectations

In order to solve the max min problem in (2.7) I endow the agent with a guess about the

relationship between the future exchange rate and the estimates for the exogenous process.

As in the definition of equilibrium, let that guess be the function f(.):

s(rt+1) = st+1 = f(rt+1) = f(rt, rt+1) (4.4)

where the agent observes rt and uses the distorted law of motion for the interest rate

differential as in (2.5) to back out the hidden state xt that controls the future evolution

of rt+1.

For the minimization in (2.7) the agent needs to understand how her expected utility

depends on the σV (rt) out of the possible set given by (2.8). Because the minimizing choice

is over sequences formed from the given exogenous set Υ the optimal solution will be a corner

solution. To obtain the minimizing sequence in (2.7) the agent has to forecast only the

monotonicity direction, and not the exact derivatives, in which different sequences σV (rt)
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influence the only unknown at time t, the expected exchange rate st+1. To forecast this

direction the agents uses the guess in (4.4).

A particular guess in (4.4) is linear in the estimate of the hidden state and in the observed

differential:

st+1 = a1x̂
t+1
t+1,t+1 + a2rt+1 (4.5)

I will return to investigating the equilibrium properties of this guess, but for the agent’s

decision it only matters the monotonicity of the average value of st+1 with respect to the

average value of rt+1. Suppose the equilibrium guess satisfies this property so we have:

Conjecture 1. In equilibrium
EP̃

t st+1

EP̃
t rt+1

< 0.

The guess in (4.5) includes

x̂t+1
t+1,t+1 = (1−Kt+1

t+1)ρx̂t+1
t,t +Kt+1

t+1rt+1

where Kt+1
t+1 , x̂

t+1
t,t are the Kalman filter objects described above. Since Kt+1

t+1 ≥ 0 then

∂st+1

∂rt+1

= a1K
t+1
t+1 + a2

For the guess in (4.5) the same intuition about the parameters a1 and a1 holds as in the

RE case. A positive realization for rt+1 will translate into an appreciation of the domestic

currency because the domestic interest rate is higher than the foreign one. Similarly, a higher

positive estimate of the hidden state means a higher present value of investing in the domestic

currency which in equilibrium will lead to an appreciation of the domestic currency. This

intuition highlights that in equilibrium a1K
t+1
t+1 +a2 will be a negative number as Conjecture

1 supposes.

The expected interest rate differential is given by the hidden state estimate

EP̃
t (rt+1) = ρx̂tt,t = ρx̂tt−1,t−1 +Kt

t(rt − ρx̂tt−1,t−1)

This means that EP̃
t (rt+1) is increasing in the innovation rt − H ′Fx̂tt−1,t−1. In turn, the

estimate x̂tt,t is updated by incorporating this innovation using the gain Kt
t . As clear from

(4.1) the Kalman gain is decreasing in the variance of the temporary shock σ2
V,(t),t. Intuitively,

a larger variance of the temporary shock implies less information for updating the estimate

of the hidden persistent state. Combining these two monotonicity results, the estimate x̂tt,t is

increasing in the gain if the innovation is positive. On the other hand, if (rt−Fx̂tt−1,t−1) < 0

then x̂tt,t is decreased by having a larger gain Kt
t .
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By construction, expected excess return EP̃
t Wt+1 is monotonic in EP̃

t (st+1) since Wt+1 =

bt[st+1 − st − rt]. The sign is given by the position taken in foreign bonds bt. If the agent

decides in equilibrium to invest in domestic bonds and take advantage of a higher domestic

rate by borrowing from abroad, i.e. bt < 0, then a higher value for EP̃
t (st+1) will hurt her.

Proposition 1. Expected excess return, EP̃
t Wt+1 is monotonic in σ2

V,(t),t. The monotonicity

is given by the sign of [bt(rt −H ′Fx̂tt−1,t−1)].

Proof. By using Conjecture 1, and combining the signs of the partial derivatives involved

in
∂EP̃

t Wt+1

∂σ2
V,(t),t

. For details, see Appendix B.

The impact of σ2
V,(t),t on the expected excess payoffs is given by the following intuitive

mechanism. Suppose the agent invests in domestic bonds (i.e. bt < 0). She is then worried

about a higher future depreciation of the domestic currency (i.e. that EP̃
t (st+1) is higher).

A higher future depreciation in equilibrium occurs when the future interest rate differential

is lower. A lower average future differential is generated if the current hidden state of the

differential is lower. The current hidden state is not observable so it needs to be estimated.

Thus the agent is concerned that the estimate is lower, i.e that x̂tt,t is lower, but still positive

to justify the starting assumption that she invests in the domestic bonds. The variance

σ2
V,(t),t negatively affects the gain Kt

t which controls the weight put on current innovations

to update the estimate of the hidden state. To reflect a concern for a lower estimate x̂tt,t

the agent chooses to act as if the variance σ2
V,(t),t is larger (low gain) when the innovation

(rt−Fx̂tt−1,t−1) is positive and as if σ2
V,(t),t is smaller (high gain) if the innovation is negative.

In (2.7) the minimization of EP̃
t Wt+1 is over the sequence σ∗V (rt). Proposition 1 refers to

the monotonicity with respect of a time s element in the sequence, taking as given the time

0, .., s − 1 elements of that sequence. The implication of Proposition 1 is that the decision

rule for choosing a distorted σV,(t),s is:

σV,(t),s = σHV if bt(rs − Fx̂ts−1,s−1) < 0 (4.6)

σV,(t),s = σLV if bt(rs − Fx̂ts−1,s−1) > 0

One way to interpret this decision is that agents react asymmetrically to news. If the

agent decides to invest in the domestic currency, then increases (decreases) in the domestic

differential are good (bad) news and from the perspective of the agent that wants to take

advantage of such higher rates. An ambiguity averse agent facing information of ambiguous

quality will then tend to underweigh good news by treating them as reflecting temporary

shocks and overweigh the bad news by fearing that they reflect the persistent shocks.

In Section 2.3, I introduced the restriction that the agent only considers n dates to be

different from the reference model. The agent’s ultimate concern is that the estimate of the
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hidden state is low but positive when bt < 0 and low in absolute value but negative when

bt > 0. For example when bt < 0 many such sequences need to be compared to produce the

minimum x̂tt,t. The minimization problem is exactly choosing the sequence out of the feasible

ones that produces such a minimum. Out of these possible sequences, (4.6) shows on what

type of sequences the agent restricts attention because they negatively affect her utility.

When the true DGP is characterized by no temporary shocks, then the minimization over

the feasible sequences is more straightforward.

Remark 1. Suppose σV = 0. Then the minimization over the sequence defined in (2.8)

reduces to minimization over the sequence

σtV = {σV,s, for s = t− n+ 1, ...t, σV,s ∈ Υ and σV,l = 0, l < t− n+ 1}

Proof. The estimate of the hidden state x̂tt,t is a weighted average of all previously

observed differentials rs, s ≤ t, with weights that are a function of the time-varying standard

deviation σV,s ∈ Υ . If at any point s with σV,s = 0, then all previous differentials rs−j,

j = 1, ..s, have weights equal to zero for x̂tt,t. See Appendix B for details.

Remark 1 implies that if σV = 0 the sequences the agent compares are the ones that have

elements different from the constant sequences of zeros only in the last n periods. Remark 1

simplifies the problem of finding the optimal sequence to minimize the estimate x̂tt,t by only

analyzing the last n observed differentials. For those differentials the decision rule in (4.6)

gives the direction of the minimizing element in the sequence with t− n+ 1 ≤ s ≤ t.

In the definition of the equilibrium I denoted the solution to this minimization problem

by σ∗V (rt). Note that this decision rule is taking bt as given. The next section discusses the

optimal condition for bt.

4.2 The optimal bond position

The bond position bt has two important features: the magnitude and the sign. In typi-

cal exercises with ambiguous signals, such as Epstein and Schneider (2007), Epstein and

Schneider (2008), Illeditsch (2009) and reviewed in Epstein and Schneider (2010), the sign

is known as the agents holds in equilibrium one particular asset of interest. Here, however,

agents are switching positions of where to invest by doing the carry trade, i.e. bt switches

between positive and negative according to the equilibrium conditions. This is easy to see

from the market clearing solution where bt = 0.5st with st fluctuating endogenously between

an appreciated and depreciated level compared to steady state, which is zero.
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The max min problem in (2.7) is:

Vt = max
bt

min
σ∗V (rt)∈σt

V

EP̃
t [bt(st+1 − st − rt)−

c

2
b2
t )] (4.7)

A property of this maxmin type of optimization is that it can have kinked instead of interior

solutions. The possible sequences σtV imply different probability distributions to evaluate the

expected excess return qt+1 = (st+1− st− rt). Let J denote the number of distinct expected

values of the excess return qt+1 implied by the feasible sequences σtV . Let {µj}j=1,...J denote

these distinct expected values. The ambiguity aversion problem can then be interpreted as

the agent being concern about which model j is the true model. Then the problem in can

be restated as:

Vt = max
bt

min
µj

(btµj −
c

2
b2
t )

Letting gj(bt) = (btµj − c
2
b2
t ) and U(bt) = minµj

gj(bt) the problem becomes:

Vt = max
bt

U(bt)

To solve for the optimal bt, I first investigate the kink solution. To do this, take the functions

gj(bt) and look at their intersection points. In this case the intersection points are bt = 0

which is the possible kink solution. To analyze whether that is the global solution I compute

the gradients of these functions at bt = 0:

∂gj(bt)

∂bt |bt=0

= µj

If the product of {µj}j=1,...J is negative, then the global solution for bt is bt = 0. In that case

there is no unique solution for the minimization problem in minµj
gj(bt) since gj(bt) = 0. If

it is positive, i.e. all µj have the same sign, then the solution allows the interchangeability

of the max and the min operator:

Vt = min
µj

max
bt

gj(bt)

For each model j we have the solution: bt =
µj

c
. So the minimization problem becomes:

Vt = min
µj

µ2
j

2c
(4.8)

µ∗j = arg min
µj

µ2
j

2c
= min

µj

(|µj|) (4.9)
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Equation (4.8) shows that the solution is then to choose µ∗j = minµj
(|µj|) and thus b∗t =

µ∗j
c
.

I call this the interior solution.

Notice that the kinked solution means that in this case there is no participation in the

market, contrary to the rational expectations model where there will always be participation,

a result well known in the ambiguity aversion literature.

4.3 Equilibrium

The equilibrium concept was defined in section 2.4. One element of the equilibrium is the

optimal bond position which, as shown in section 4.2, is a function of the expected payoffs

{µj}j=1,...J implied by the sequences of variances σtV . The optimal position can be the kinked

solution bt = 0, depending on the sign of the possible expected payoffs, which in turn are

endogenous objects. Thus, to compute the equilibrium I take the following approach.

Suppose the economy at time t is characterized by all the implied possible expected

payoffs being positive, i.e. 0 < µ1 < ... < µJ with µ1 denoting the minimum payoff. In

this case we know from (4.9) that µ1 should be the equilibrium payoff and that bt is the

equilibrium interior solution

b∗t =
µ1

c
> 0

Using the sign of b∗t the optimal sequence σ∗V (rt) can be computed along the lines of section

4.1 and decision rule (4.6). This generates x̂tt,t = EP̃
t (rt+1). Using the conjectured law of

motion st+1 = f(rt, rt+1) the expected EP̃
t (st+1) is formed. Given that b∗t is interior and

using the market clearing condition bt = 0.5st results in

st =
EP̃
t (st+1)− rt
1 + 0.5c

(4.10)

The objects b∗t , σ
∗
V (rt), st are an equilibrium if sign(st) = sign(bt). If not, the conjectured

starting point is not correct and there are at least some sequences of variances that imply

negative expected payoffs.

In that case, suppose the the economy at time t is characterized by all the implied possible

expected payoffs being negative, i.e. 0 > µJ > ... > µ1 with µ1 now denoting the minimum

payoff in absolute value. In this case we know from (4.9) that µ1 should be the equilibrium

payoff and again that

b∗t =
µ1

c
< 0

A similar equilibrium logic as above suggests using the sign of b∗t to compute the minimizing

sequence σ∗V (rt). Then use the market clearing condition and the optimality of b∗t as an
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interior solution to compute st. The objects b∗t , σ
∗
V (rt), st are an equilibrium if again

sign(st) = sign(bt). If not, then this second conjectured starting point for finding the

equilibrium is also not correct.

In that case it must be that there are both positive and negative expected payoffs implied

by the possible sequences σtV . Then we have from 4.2 and the market clearing solution that

the equilibrium solution is no participation, b∗t = 0, and the distorted sequence σ∗V (rt) is not

uniquely determined, as any of the possible sequences σtV are an equilibrium σ∗V (rt).

The last element defining the equilibrium is whether, based on the conjectured law

of motion f(rt+1), the equilibrium exchange rate is consistent with st = f(rt). In order

to address this consistency I impose the following restriction on the agent’s conditional

probability model, where n is the constant number of dates at which the agent entertains

that the alternative sequence of variances can differ from the reference sequence:

Assumption 1 : P (σV,(t+1),t+1 = σHV |It) + P (σV,(t+1),t+1 = σLV |It) = n
t
.

Assumption 1 has the implication that lim
t→∞

EP̃ (σV,(t+1),t+1|It) = σV .

This assumption states that when the agent at time t is using her conjecture about

how exchange rate at time t + 1 responds to the observables at time t + 1, the expectation

about what agents at time t + 1 will perceive as the time t + 1 standard deviation of the

temporary shock is consistent with her view about the historical data. The expected value

EP̃ [σV,(t+1),t+1|It] equals:

σHV P (σV,(t+1),t+1 = σHV |It) + σLV P (σV,(t+1),t+1 = σLV |It) + σV P (σV,(t+1),t+1 = σV |It)

By the construction of n, the agent at time t believes that σV,s 6= σV for {s = 0, ..., t}
only for n out of t times in the sample of observable data she has. Thus, in forming

EP̃
t σV,t+1,the agent uses the same frequency approach to believe that Prob(σV,(t+1),t+1 =

σHV |It)+Prob(σV,(t+1),t+1 = σLV |It) = n/t.

The fact that for t large the expected variance is equal to the constant reference σV

has important implications for the conjectured law of motion. Take the conjectured law of

motion as in (4.5):

st+1 = a1x̂
t+1
t+1,t+1 + a2rt+1.

Then, we have EP̃
t st+1 = EP̃

t [(1 − K)a1ρx̂
t+1
t,t + (a1K + a2)rt+1], where K is the Kalman

gain associated with the sequence of constant variances σV . Under the time t probability

distribution: EP̃
t rt+1 = ρx̂tt,t so

EP̃
t st+1 = (1−K)a1ρE

P̃
t (x̂t+1

t,t ) + (a1K + a2)ρx̂tt,t. (4.11)
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The time t + 1 estimate of the time t hidden state, x̂t+1
t,t , is not in general equal to x̂tt,t

because the former is based on a sequence of variances σV,(t+1),s for s = 1, ...t which can differ

from σV,(t),s, i.e. the worst-case scenario for the time t + 1 agent can differ from the worst-

case scenario of the time t agent. However, under the special case σV = 0, this difference is

irrelevant since K = 1. This special case is helpful in getting analytical results about the

consistent law of motion.18 Indeed, in a spirit close to that of Remark 1, I get:

Remark 2. If σV = 0, then under the conjectured (4.5), EP̃
t st+1 = (a1 + a2)ρx̂tt,t.

Proof. Since σV = 0, then K = 1 in (4.11).

Proposition 2. Under Assumption 1 and if σV = 0 the equilibrium law of motion for the

exchange rate is:

st = a1x̂
t
t,t + a2rt (4.12)

where a1, a2 are the same coefficients as in equations (3.7) and (3.8) respectively, that

characterize the rational expectations case.

Proof. Use Remark 2, the FOC (4.10) and the same guess-and-verify method as in the

rational expectations case.

The key limitation of Assumption 1 is that it imposes a model for forming expectations

about time st+1 in which the time t + 1 signal, rt+1, is in the limit not ambiguous. Thus,

different than Epstein and Schneider (2008) for example, there is no ambiguity premium

coming from the expectation of the arrival of future ambiguous news. Such an ambiguity

premium would be generated by the expectation of the asymmetric response to news in the

next period.

Assumption 1 can be justified on several grounds. First, according to this assumption

EP̃ [σV,(t+1),t+1|It] is consistent with EP̃ [σV,t+1|It], which is the expected realized standard

deviation for time t + 1. A second reason is related to the ability of solving the model. If

there is an ambiguity premium generated by the expected arrival of ambiguous news that

premium is reflected in the exchange rate at time t and the conjectured law of motion in

(4.5) would have to take it into account. But since that premium is not discounted, i.e. there

is no discounting of the expected premium in the UIP equation st = EP̃
t st+1 − rt, then the

model would have no solution in which that premium would be different from zero. Remark

3 addresses this point and Appendix B.1 presents some details on this argument.

18If σV > 0 then K < 1 and finding the coefficients a1 and a2 requires numerical solutions to minimize the
distance between the perceived law of motion (4.5) and the actual law of motion that take into account the
distorted expectations and Assumption 1. There, Conjecture 1 is verified by checking the signs of the two
coefficients a1 and a2. Such a numerical procedure is detailed in Appendix B.2. Proposition 2 also verifies
Conjecture 1 through the implied signs of the analytical a1 and a2.
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Remark 3. If the conjectured law of motion in (4.5) is enriched to st+1 = a1x̂
t+1
t+1,t+1 +

a2rt+1 + δ and EP̃
t a1x̂

t+1
t+1,t+1 = a1ρx̂

t
t,t + δ then there is no δ 6= 0 that implies consistency of

beliefs.

Proof: Using the UIP equation st = EP̃
t st+1 − rt and the proposed conjecture implies

that st = a1E
P̃
t x̂

t+1
t+1,t+1 + a2E

P̃
t rt+1 + δ− rt = (a1 + a2)ρx̂tt,t− rt + 2δ. For consistency to hold

it must be that a2 = −1, a1 = − ρ
1−ρ and δ = 0.

A third argument to defend Assumption 1 is related to the fact that the ex-post positive

payoffs at t+1 implied by the model can be entirely attributed by the agent as a compensation

for the uncertainty faced at time t. To analyze this argument, let EP
t st+1 denote the average

equilibrium ex-post st+1 and EP̃
t (st+1) denote the expected st+1 implied by the distorted

beliefs P̃ , the conjectured law of motion in (4.5) and Assumption 1. Let P denote an

alternative distribution implicitly defined by σV and the other known elements of the law

of motion for rt+1 implied by (2.5) such that the set Υ now contains four elements {σLV <

σV < σV < σHV }.19 Then the following can be stated:

Remark 4. If [EP
t st+1−EP̃

t (st+1)]sign(bt) ≡ dt > 0, then there exists a σV such that dt can

be generated by the true DGP being P and st+1 responding symmetrically to news as implied

by Assumption 1.

Proof : See Appendix B.1.

The intuition behind Remark 3 is that when the agent investing at time t observes on

average ex-post positive payoffs at time t + 1, these payoffs are naturally interpreted as a

compensation for the uncertainty about σV (rt) faced at time t. The true DGP is characterized

by the constant σV , however, by construction, there is incomplete knowledge about this

feature of the economy. Take for example bt < 0. After observing EP
t st+1 < EP̃

t (st+1) and

using the conjecture that st+1 is controlled by the law of motion in (4.5) and Assumption

1 the agent would conclude that st+1 has depreciated less ex-post because her expected

rt+1, E
P̃
t rt+1, was lower than the possible true DGP P , i.e. EP̃

t rt+1 < EP
t rt+1. This is

consistent with the fact that the agent at time t was acting upon a sequence of variances

with draws from {σLV < σV < σV < σHV } that was minimizing expected payoffs. Appendix

B.1 details this observation.

4.4 Risk aversion and ambiguous signals

The model so far has been derived under a setup in which the agent is ambiguity averse but

otherwise risk-neutral. Introducing risk-aversion complicates the analysis significantly. The

19Note that P̃ remains identically as when Υ = {σL
V < σV < σH

V } because the corner solutions are the
same.
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reason is that with risk-aversion the minimizing choice over the variance of temporary shocks

will be influenced by two effects. The first effect analyzed so far is the effect through the

expected payoffs: the variance affects the Kalman gain, which in turn affects the estimate

of the hidden state and this estimate controls the expected payoffs. However, with risk

aversion, the variance has an added direct effect on utility. To see the two channels, consider

a mean variance utility:

Vt = max
bt

min
σ∗V (rt)∈σt

V

EP̃
t [bt(st+1 − st − rt)]−

1

2
b2
tV ar

P̃
t st+1

where the minimization is over the same sequence of variances as in (2.8). Suppose the

equilibrium is characterized by a similar law of motion as the guess in (4.5) with the

coefficients a1, a2 potentially different in this case. Then:

V arP̃t st+1 = (a1K + a2)2V arP̃t rt+1.

By the Kalman filtering formulas, as in (3.4), (3.5), and Assumption 1, the conditional

variance of rt+1 is:

V arP̃t rt+1 = ρ2Σt
t,t + σ2

U (4.13)

It is then easy to establish that:

Proposition 3. The variance of excess payoff, b2
tV ar

P̃
t st+1, is increasing in σ2

V,(t),t.

Proof. The variance b2
tV ar

P̃
t st+1 is increasing in V arP̃t rt+1. By (4.13) the latter is

increasing in σ2
V,(t),t through the effect on Σt

t,t. For details see Appendix B.

Intuitively, a larger variance of the temporary shocks translates directly into a higher

variance of the estimates Σt
t,t. By choosing higher values of σV in the sequence σV (rt), she

will increase the expected variance of the differential V arP̃t rt+1 because
∂Σt

t,t

∂σ2
V,(t),t

> 0.

The overall effect of σ2
V,(t),t on the utility Vt is then coming through two channels. One is

the positive relationship between σ2
V,(t),t and the variance of the payoffs as in Proposition 3.

The other effect is through expected payoffs and is given by Proposition 1 The total partial

derivative is then

∂Vt
∂σ2

V,(t),t

=
∂Vt

∂EP̃
t st+1

∂EP̃
t st+1

∂EP̃
t srt+1

∂EP̃
t rt+1

∂σV,(t),t
+

∂Vt

∂V arP̃t rt+1

∂V arP̃t rt+1

∂σV,(t),t
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Using Propositions 1 and 3, the sign of this derivative is:

sign

[
∂Vt

∂σ2
V,(t),t

]
= sign(bt)sign(rt − Fx̂tt−1,t−1)− sign

[
∂V arP̃t rt+1

∂σ2
V,(t),t

]

From Proposition 3 the sign(∂V arP̃t rt+1/∂σ
2
V,(t),t) is positive. Thus, if the sign of [bt(rt−

Fx̂tt−1,t−1)] is negative, then the two effects align because a higher variance σ2
V,(t),t will imply

lower expected excess payoffs. However, if the sign is positive, then the two directions are

competing. Then it remains a quantitative question to determine which effect is stronger.

To analyze this situation, I show in Appendix B.3 that in this setup the probability that

the effect through the expected payoffs dominates the one through the variance is almost

equal to one. I conclude that in this model the effect of σV (rt) on utility goes almost entirely

through its effect on expected payoff.

Introducing risk aversion raises another important issue related to the assumed structure

of uncertainty. In the risk-neutral case, whether uncertainty is assumed about the realizations

of the variances of the temporary shock or the persistent shock is completely innocuous. The

reason is that with risk-neutrality, by construction, the driving force in the agent’s evaluation

is the expected payoff. Expected payoffs are affected by the estimate for the hidden state

which in turn depends on the time-varying signal to noise ratios. This implies that it is

not the specific equation, either the observation or state equation, in which uncertainty is

assumed that matters but the relative strength of the information contained in them. Such

an irrelevance of the structure of uncertainty will qualitatively not hold with risk aversion.

However, quantitatively, in a setup with risk aversion where expected payoffs drive most of

the portfolio decision such issues tend to become mute.

This argument also highlights the fact that it is very important to include the expected

return channel in any evaluation of the effect on utility of variances of unobserved shocks.

If that effect is absent, the robust estimator features different qualitative properties. For

example, there are models that deal with a robust estimator that have considered a setup

with commitment to previous distortions in which the agent wants to minimize the estimation

mean square error. Li and Tornell (2008) study such a problem and show that if the agent

is concerned only about the uncertainty of the temporary shock, then she will act as if the

variance of the temporary shock is higher. That generates a steady state robust Kalman gain

that is lower than the one implied by the reference model. Such a concern for misspecification

generates the type of underreaction to news that has been proposed in the literature as a

mechanism to explain the UIP puzzle. However, as Li and Tornell (2008) point out, when

uncertainty about the persistent shock is added the concern for misspecification leads to a
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higher robust Kalman gain than in the reference model.20 That implies an overreaction to

news and a UIP regression coefficient that is higher than 1, thus moving away from explaining

the puzzle.

4.5 Parameterization

In the benchmark case, the reference model is an AR(1) state space representation as in (2.1)

where σV = 0. Remarks 1 and 2 show that when σV = 0 there are analytical solutions to the

equilibrium of the ambiguity aversion version of the model, a feature that helps understand

the mechanics of the model. A value of σV = 0 is also consistent with ML estimates of (2.1)

reported in Table 10.

Table 1: Benchmark specification

σV σHV σLV σDGPU ρ c
0 0.00025 0 0.0005 0.98 0

These values imply that the steady state Kalman weight on the innovation used to update

the estimate of the current state is 1, 1 and 0.17 for the true DGP, the low variance and

the high variance case. Although the lower gain might seem very different than the true

DGP, note that the model does not imply that these gains are used for every period. It is

only for a few dates in a large sample that such distorted gains are employed. Also note

that the cost of capital c is set to zero in the benchmark specification to have UIP hold

exactly under the distorted expectations. When discussing the effect of risk aversion that

value will be changed to reflect the extent to which risk aversion can affect the results in

this model.21 According to Proposition 2 the resulting equilibrium coefficients a1 and a2 can

then be determined analytically and they are equal to − ρ
1−ρ = −49 and −1 respectively.

As discussed in Section 2.3, in order for the equilibrium distorted sequences of variances

to be difficult to distinguish statistically from the reference sequence I restrict the elements

in the alternative sequences considered by the agent to be different from the reference model

only for a constant number n of dates. To quantify the statistical distance between the two

20In this case, as discussed in Basar and Bernhard (1995) and Hansen and Sargent (2008, Ch.17), the
robust filter flattens the decomposition of variances across frequencies by accepting higher variances at
higher frequencies in exchange for lower variances at lower frequencies.

21Note that when c = 0 utility is linear in the expected return so if equilibrium bt 6= 0 then EP̃
t qt+1 = 0,

implying UIP holds ex-ante under the distorted equilibrium P̃ and bt is determined by the market clearing
condition.
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Table 2: Likelihood comparison: LDist(rt)− LDGP (rt)

Mean St.dev. %positive
(1) −1.4 1.23 0.05

(0.06) (0.03) (0.01)
(2) −204 2.8 0

(3.2) − −

models, I use a comparison between the log-likelihood of a sample {rt} computed under

the reference sequence of constant variances (LDGP (rt)) and under the equilibrium distorted

sequence (LDist(rt)).

Table 2 reports some statistics for the likelihood comparison LDist(rt) − LDGP (rt),

computed for a sample of T = 300, for various cases. The table reports the mean and

the standard deviation of this difference and the percent of times for which this difference

is positive. The standard deviation of these statistics is then computed across N = 1000

simulations. Row (1) reports the results for the benchmark parameterization in which n = 2.

It shows that the average difference between LDist(rt) − LDGP (rt) is around -1.4. Row (2)

considers the situations in which there is no restriction on the number of periods for which

the agent distorts the sequence so that for any period characterized by good news a low

precision of signals is used and a high precision of signals for bad news. In this case n = t

and the difference LDGP (rt) − LDist(rt) is increasing with the sample size. For T = 300,

the average difference across simulations is around 200 log points. Thus, such a distorted

sequence would result in an extremely unlikely interpretation of the data. For this reason, I

restrict n to be a small number.

5 Results

In this section I present the main implications that the distorted expectations model has

for exchange rate puzzles. Figure 1 illustrates for one simulation of the model the exchange

rate path under the distorted expectations version (the solid line path) and the rational

expectations (RE) version (the - - path). There, for comparison, the same exogenous driving

process is used but the estimates are computed under the different model solutions. When

the agent is investing in the foreign bond, i.e. bt > 0 and st > 0 , she is concerned that the

negative estimate of the hidden state is in fact less negative than what the reference model

would imply. Her investment position will reflect her pessimistic assessment of the future

distribution and she will invest less compared to the RE model. Thus, st < sREt when st > 0
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and st > sREt when st < 0 where sREt denotes the exchange rate under RE.

Figure 1: Model generated exchange rate path
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Table 3: Correlations exchange rates

(1) (2) (3) (4)
0.97 0.52 0.18 0.77

(0.01) (0.04) (0.05) (0.02)

Figure 1 shows that the exchange rate under ambiguity reacts asymmetrically to news.

When for example bt < 0 the domestic currency appreciates more gradually while depreciat-

ing suddenly compared to its RE version. This is consistent with the description that for the

high interest rate (investment) currency “exchange rates go up by the stairs and down by the

elevator” (see Brunnermeier et al. (2008)). To investigate this asymmetric response further,

Table 3 computes correlations between the exchange rate under ambiguity and under RE.

Columns (1) and (2) indicate that the unconditional correlation in levels is very high while

in first differences is respectively lower. Columns (3) and (4) show that conditional on states

in which the investment currency tends to appreciate the correlation in first differences is

much weaker than in states in which the investment currency is depreciating.

In terms of other conditional relationships I find that a higher domestic interest rate

differential: 1) does not predict on average a larger domestic currency depreciation since the

UIP regression coefficient is on average negative, not significantly different from zero in small

samples, but significantly negative in large samples; 2) predicts a positive excess return from
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the carry trade strategy; 3) predicts a negatively skewed excess payoff for the carry trade

strategy; 4) is followed by a gradual appreciation of the domestic currency.

5.1 The UIP puzzle and positive carry trade payoffs

In the distorted expectations model UIP holds ex-ante and the expected excess payoffs under

the worst-case scenario distribution P̃ are zero:

st+1 − st = rt + ε̃t+1 (5.1)

where EP̃
t (ε̃t+1|It) = 0. The UIP regression is:

st+1 − st = βrt + εt+1 (5.2)

where P is the probability distribution implied by the true DGP and EP
t (εt+1|It) = 0.

Let ηt ≡ EP̃
t (st+1|It)−EP

t (st+1|It) denote the expectational error of predicting st+1. Then

combining (5.1) and (5.2) the UIP regression becomes:

st+1 − st = rt − ηt + εt+1.

The estimated UIP regression coefficient is then:

β̂ = 1− cov(ηt, rt)

var(rt)
. (5.3)

Intuitively, if when rt is increasing the expected st+1 under the market’s expectations is

increasing compared to the expected st+1 under the true DGP, then the covariance in (5.3)

is positive and the estimated β̂ can be negative.

Before presenting the results from the ambiguity aversion model, it is worth investigating

as a benchmark the case of rational expectations but with risk aversion. As explained in

Section 3, the solution for exchange rate under RE with a mean-variance utility is:

st =
Et(st+1 − rt)

1 + 0.5c

where c = γV ar(st+1). From equation (3.10) we have that the lower bound on β̂ is obtained

by setting σV = 0, so:

β̂ ≥ β̂
L

=
1− ρ

1 + 0.5c− ρ
.

To investigate the magnitude of β̂
L

under risk aversion, I report below some simple
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calculations based on the main parameterization for the interest rate differential from Table

1. The equilibrium coefficients a1 and a2 are given by formulas (3.7) and (3.8). Table 4

reports the model implied exchange rate volatility and β̂
L

for various levels of risk aversion

γ. The conclusion that emerges from Table 4 is that with a low level of risk aversion the

reaction of the exchange rate to the interest rate (equal in this case to a1+a2) is large and can

generate significant variability in the exchange rate.22 With a low risk aversion, the model

implied β̂ is smaller than one, but very close to it. Although the model implied β̂ decreases

with γ, even with a huge degree of absolute risk aversion the UIP regression coefficient is

still positive and large. For example when γ = 500, the model implied β̂
L

is around 0.41.

Table 4: Rational expectations model

γ = 2 γ = 10 γ = 50 γ = 500
stdt(st+1) 0.0243 0.0222 0.0179 0.0105

β̂
L

0.97 0.89 0.71 0.41

This discussion highlights why a model of unstructured uncertainty discussed in Section

2.2 and analyzed in Appendix A, does not fare well in this setup. That type of model

is equivalent to a rational expectations framework but with higher risk aversion. Driving

the coefficient to zero from above requires appealing to enormous levels of risk aversion.

Moreover, this high risk aversion would imply a minuscule response of the exchange rate to

the interest rate to the point that the former is flat.

The focus of this paper is to show that a model with ambiguous precision of signals

about a time-varying hidden state can provide an explanation for a negative β̂. In this

model, agents at time t take a worst-case evaluation of the precision of the signals by

underestimating, compared to the true DGP, the hidden state of the investment currency.

That underestimation is increasing in the size of the hidden state since the Kalman gain

multiplies the perceived innovation in the hidden state. Thus, the higher rt is, the larger

is the difference between the expected depreciation of the investment currency under P̃

compared to P.

Table 5 presents the estimated β̂ for the model implied UIP regression in (5.2) in 1000

repeated samples of T = 300 and T = 3000. Column (1) is the benchmark specification and

shows that, for small T , the model is generating a negative average β̂, even if not significant

statistically. As the sample size is increased and the standard errors reduce, the average and

22This latter point has been made by Engel and West (2004) and Engel et al. (2007) who also show that
when ρ is close to 1 these models are characterized by a low forecasting power for the interest rate differential
in predicting the exchange rate change.
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Table 5: Model implied β̂ for the UIP regression

(1) (2) (3) (4)

β̂ tβ̂ β̂ tβ̂ β̂ tβ̂ β̂ tβ̂
T=300 Mean -0.42 -0.81 0.42 1.19 0.38 3.5 -0.62 -1.3

Median -0.37 -0.73 0.4 1.16 0.38 3.7 -0.6 -1.2
St.dev. 0.22 0.38 0.08 0.3 0.05 0.4 0.18 0.51

T=3000 Mean -0.2 -1.7 0.54 1.75 0.48 1.58 -0.34 -2.2
Median -0.19 -1.6 0.52 1.72 0.47 1.55 -0.31 -2.14
St.dev. 0.03 0.17 0.11 0.32 0.09 0.2 0.05 0.21

median estimate become significant. This highlights that the results of the model are not

limited to small samples and in fact are stronger in large samples. The type of ambiguity

modeled in this paper is active even as the sample size increases.

Figure 2: Model implied UIP coefficients
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Figure 2 is the histogram of the UIP coefficients across many repeated samples. The

top panel plots the histogram of the estimated UIP coefficients on N = 1000 samples of

T = 300. It shows that the vast majority of the estimates are negative. For the large sample

of T = 3000 the bottom panel of Figure 3 indicates the distribution of the estimates and

shows that there are no positive values obtained.

Column (2) of Table 5 considers a case in which the noise-to-signal ratio in the true DGP
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is much higher than in the benchmark model. In that case, the estimated UIP coefficient is

positive. For that parameterization the steady state Kalman gain for the true DGP, high

distorted precision and low distorted precision are 0.3, 1 and 0 respectively. The Kalman

gain used by the agent in updating the estimated hidden state is time-varying to reflect

the optimal response of the agents to “good” and “bad” news. This optimal time-variation

implies two opposing forces on β̂: the underreaction makes the coefficient become negative

and the overreaction pushes it to be larger than one. The combined effect depends on how far

apart the distorted gains are from the one implied by the true DGP. In the benchmark case,

as reported in Table 2, the true noise-to-signal ratio is small. In that case the overreaction

channel is dominated because the Kalman gain implied by σLV is closer to the reference model.

Intuitively, if σV is close to zero any σLV < σV will make a small difference on the implied

gain. However, if σHV > σV the distorted gain can be considerably smaller. In the variant

reported in Column (2), the gain under the reference model is closer to the one implied by

σHV , so the underreaction effect is less active. That is the reason why the estimated UIP

coefficient is positive.

Column (3) of Table 5 shows that when there is significantly less persistence in the

state evolution the model cannot account for the UIP puzzle. For that experiment, the

autocorrelation of the hidden state is 0.7. The reaction of the exchange rate to the estimate

of the hidden state is strongly affected by this persistence because the present value of future

payoffs to a bond is smaller following the same increase in the interest rate. For the same

interest rate differential this makes agents demand less of the bond and the investment

currency value goes up by less. As Engel and West (2004) argue, for a high persistence of

the fundamentals the exchange rate is very sensitive to changes in the present value of future

payoffs. They argue that this explains why exchange rates are hard to predict even in a

model where they are completely determined by fundamentals. A large sensitivity of the

currency’s value to the hidden state allows small distortions to the estimate to produce large

deviations in the exchange rate evolution. With significantly less persistence, the model has

a difficult time in explaining the UIP puzzle.

These exercises show that the two main features of the true DGP that are required for the

theory to succeed are relatively small temporary shocks and large persistence of the hidden

state. The benchmark parameterization is characterized by these conditions because the

data strongly suggests such a calibration. It is important to note though that Columns (2)

and (3) of Table 5 show that the benchmark calibration is in fact rather robust to changes

as significant variations have to be made to it to reverse the results.

Column (4) of Table 5 presents the results for the parameterization of the model in which

there are no restrictions on the number of periods in which the agent can distort the reference
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sequence, i.e. n = t. For such a case, the model implies a negative and larger in magnitude

Fama regression coefficient both in short and large samples. Thus, relaxing the benchmark

restrictions of n < t improves the model’s ability to generate the empirical puzzles at the cost

of implying very unlikely distorted sequences compared to the reference model. As Column

(3) of Table 2 reports, this case generates sequences that become increasingly less likely as

the sample size grows.

5.2 Positive mean, negative skewness and excess kurtosis of ex-

post carry trade payoffs

Section 5.1 described the model’s implications for the UIP puzzle. The UIP condition

was holding ex-ante under the equilibrium distorted beliefs so the underlying equilibrium

speculation strategy has zero expected payoffs under these beliefs. The ex-post failure of

the UIP condition has significant consequences for the ex-post profitability of the investment

strategy. As argued before, in equilibrium, the investors of this model engage in the carry-

trade strategy, which means borrowing in the low interest rate currency and investing in the

high interest rate currency. Indeed, the agents’ end-of-life wealth is given by bt(st+1−st−rt).
By the market clearing condition bt < 0 when st < 0.23 The payoff on a dollar bet for the

carry trade strategy is:

zt+1 = rt − (st+1 − st) if bt < 0 (5.4)

zt+1 = (st+1 − st)− rt if bt > 0

Using the definition of the carry trade in (5.4), Table 6 describes the model implied non-

annualized monthly carry trade payoffs. These payoffs are characterized by a positive mean,

negative skewness and excess kurtosis. The excess payoffs have a positive mean because

a high interest rate differential predicts on average a zero currency depreciation or even a

slight appreciation. The average mean payoff reported in Table 6 is 0.0016.

To compare the model-implied statistics with the data, I compute the payoffs to the carry

trade for 16 developed countries for the period 1976-2008. The main statistical properties

of those payoffs are reported in Table 11 of Appendix C. There I report that the computed

average mean payoff for the carry trade strategy is 0.0041. This does not take into account

transactions costs. Burnside et al. (2008) (henceforth BEKR) analyze a more extensive

23In simulations, the coefficient of correlation between st and rt is around −0.97. The correlation is not −1
because the exchange rate depends mostly on the sign of the hidden state estimate and this can be different
from the sign of the interest rate. Moreover, due to the “inaction” effect, in some cases agents choose not
to invest at all if rt is too close to zero. In these few case, when computing the carry trade payoffs I use the
fact that such a payoff is zero.
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Table 6: Model implied statistics for the carry trade payoffs

Mean Standard Sharpe Skewness Kurtosis
Deviation Ratio

T = 300 0.0016 0.0161 0.1 −0.135 5.83
(0.0008) (0.001) (0.048) (0.22) (0.7)

T = 3000 0.0016 0.0172 0.1 −0.16 5.9
(0.00002) (0.00003) (0.014) (0.08) (0.23)

data set and find that the average payoff to the carry trade without transactions costs across

individual country pairs for the period 1976-2007 ranges from 0.0026 when the base currency

is the GBP to 0.0042 when the base currency is the USD. With transaction costs they report

a range of 0.0015 to 0.0025. Table 6 also shows that the average standard deviation of the

model implied carry trade payoffs is around 0.016. For the data analyzed in Table 11 the

average standard deviation is 0.031.

Thus, compared to empirical evidence on the carry trade payoffs, the present model

delivers mean payoffs that are around half of those computed without transaction costs

and at the lower bound of the empirical payoffs with transaction costs. The model implied

average standard deviation of these payoffs is also around half of its empirical counterpart.

With both the mean and the standard deviation both lower, the model-implied carry trade

payoffs are characterized by a Sharpe ratio of 0.1, very close to the reported empirical value

of 0.133.

Figure 3 plots the histogram of the realized carry trade payoffs obtained for N = 1000

samples of size T = 300. The mean of these payoffs is positive and, compared to a normal

distribution with the same mean and variance, the payoffs are negatively skewed and have

significant excess kurtosis.

Besides the positive mean of the carry trade payoffs, a very interesting and important

feature of the empirical payoffs is the negative skewness. To study this property, table 6

indicates that the model-implied payoffs to the carry trade are on average negatively skewed.

The degree of skewness is slightly lower than the one found in the data for the carry trade

payoffs analyzed in Table 11. The model implies a negative skewness of -0.135 while the

average for the countries in Table 11 is -0.26.

To investigate further the properties of the realized skewness of excess payoffs I construct

two tests. The first, more cross-sectional in nature, is similar to that of Brunnermeier

et al. (2008). It involves checking whether periods (countries in Brunnermeier et al. (2008))

characterized by a higher domestic currency also experience a negative skewness in the excess
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Figure 3: Model generated carry trade payoffs
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Table 7: Model implied statistics for the “crash risk” regressions

T = 300 T = 3000

β̂2 tβ̂2
β̂2 tβ̂2

−2.2 −6.8 −1.93 −6.32
(1.04) (2.33) (0.81) (1.65)

payoffs. To that end, I simulate the model for T = 300 and for each t collect rt and the

realized excess payoffs ext+1 = rt − (st+1 − st). I sort the excess payoffs ext+1 according to

the sign of rt. Denote by ex+
t+1 the payoffs when rt > 0 and by ex−t+1 when rt < 0. Consistent

with the predictability of excess payoffs, the average of ex+
t+1 is positive and the average of

ex−t+1 is negative. Importantly, I find that the skewness of ex+
t+1 is negative and that of ex−t+1

is positive.

The second test, for a time varying dimension, is to simulate the model and at each date

t to take N = 20000 draws from the DGP process for the date t + 1 realizations of rt+1.

Using these draws, I solve the model at time t+ 1 and then collect the equilibrium implied

st+1. Based on these, I compute the realized excess payoffs ext+1 = rt − (st+1 − st) and

their skewness denoted by Skewt+1. The same conclusions hold: a higher rt predicts a lower

Skewt+1. Positive rt are associated with negative Skewt+1. Table 7 reports the results of

the regression

Skewt+1 = β2rt + ξ2,t+1.

The model generates a negative significant β̂2 as found empirically by Jurek (2008) who

investigates both the cross-section and the time variation and finds that in both dimensions

35



the effect is very significant.

Consistent with the data, these results imply that investing in a higher interest rate

currency produces an average positive excess return which is negatively skewed. The thicker

left tail occurs because of the larger reaction to negative innovations and the smaller reaction

to positive shocks in the high-interest-rate. Thus “crash risk” in this model is endogenous

and it happens when negative shocks hit an otherwise positive estimate of the hidden state.

5.3 Delayed overshooting

The forward premium puzzle refers to the unconditional empirical failure of UIP. This does

not necessarily imply that a conditional version of UIP fails too. Following a positive shock

to the interest rate the UIP condition states that the domestic currency should appreciate

on impact and then follow a depreciation path. Such a mechanism can be investigated

empirically by identifying the response of the exchange rate to a monetary policy shock.

Several studies have analyzed this conditional UIP using different identification restric-

tions. Eichenbaum and Evans (1995), Grilli and Roubini (1996) use short-run restrictions

to identify the effect of structural monetary policy shock on the exchange rate. They find

significant evidence of delayed overshooting: following a contractionary monetary policy

shock the domestic interest rate increases and there is a prolonged period of a domestic

currency appreciation. The peak of the impact occurs after one to three years as opposed to

happening immediately as predicted by the Dornbusch (1976) overshooting model. Faust and

Rogers (2003) find that these results are sensitive to the recursive identification assumptions

and that the peak of the exchange rate response is imprecisely estimated. Scholl and Uhlig

(2006) use sign restrictions and also find evidence for delayed overshooting. For the country

pairs they analyze, the estimated peak occurs within a year or two. Although they differ

in their estimates of the length of the delayed overshooting effect, all of these identifying

approaches reach a robust conclusion: following a monetary policy shock there are significant

deviations from the UIP.

As discussed in Section 1, the model presented in this paper attempts to explain the

delayed overshooting puzzle through a mechanism similar to Gourinchas and Tornell (2004).

There they posit that if agents, for some reason, systematically underreact to news this

behavior can explain the conditional and unconditional UIP puzzles. The difference is that

here I investigate a model which addresses the origin and optimality of such beliefs. As

explained in previous sections, I find that agents underreact to good news and overreact to

bad news. However, for the impulse response function that I analyze and that is typical to

the empirical identification, it is only the underreaction effect that shows up, which makes
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the intuition of the delayed overshooting similar to the one in Gourinchas and Tornell (2004).

To generate the impulse response of the exchange rate to a shock to the interest rate

differential, assume that the economy starts in steady state. Thus, rt−1 = 0, bt−1 = 0 and

EP̃
t−1st = EP

t−1st = 0. At time t there is a positive shock to the interest rate differential. Take

again the true DGP as in (2.1):

rt = xt + σV vt (5.5)

xt = ρxt−1 + σUut

The values for σV , σU and ρ are the same as in Section 4.5.

To investigate the average response to an increase in rt this experiment needs to impose

that the observed positive shock to rt is generated by a combination of a shock to the

persistent and the temporary component that corresponds to their true DGP likelihood of

occurrence. Suppose rt increases by α. When σV = 0 this means that the increase in rt was

generated by a shock to ut, i.e. σUut = α. When σV > 0 then the experiment imposes that:

xt = ρxt−1 + E(σUut|σUut + σV vt = α) = ρxt−1 + α
σ2
U

σ2
V + σ2

U

The next periods shocks are set equal to zero. The RE solution is then: sREt = a1x̂
RE
t,t + a2rt

and the distorted expectations solution is st = a1x̂
t
t,t + a2rt, where x̂REt,t is the estimate of

the hidden state xt under RE and x̂tt,t is the estimate under the ambiguity aversion model.

Under σV = 0, x̂REt,t = α while x̂tt,t 6= α.

Figure 4 plots the dynamic response of the exchange rate to the observed increase in

rt. The RE version features the Dornbusch (1976) overshooting result in which the peak of

the impact is at time t. Consider the decision at time t. The agent sees the increase in the

interest rate differential but she is worried about a significant depreciation at time t+ 1. In

equilibrium, she is concerned that this rise in rt is caused by a temporary rise. She then

believes that the true σV,t = σHV and acts on this belief by investing much less in the domestic

bond than she would under rational expectations. Because we start from the steady state,

her estimate at time t is then:

x̂tt,t = Kt
tα

Kt
t =

ρ2Σ + σ2
U

ρ2Σ + σ2
U + σ2,H

V

< 1

Σt,t = (1−Kt
t)σ

2
U

37



where Σ = 0 since it is the steady state variance of the estimate of the hidden state, which

if σV = 0, is perfectly observed in steady state. By underestimating the true hidden state

she observes a higher than expected rt+1. Her updated estimate at time t+ 1 is:

x̂t+1
t+1,t+1 = ρx̂t+1

t,t +Kt+1
t+1(rt+1 − ρx̂t+1

t,t )

Kt+1
t+1 =

ρ2Σt,t + σ2
U

ρ2Σt,t + σ2
U + σ2,H

V

x̂t+1
t,t = α

[
ρ2Σ + σ2

U

ρ2Σ + σ2
U + σ2,H

V

]
= x̂tt,t.

The reason why here the agent at time t + 1 chooses to act as if σV,t = σV,t+1 = σHV is

that at time t + 1 she will invest in the domestic bond. This means that she will treat the

observed innovations as reflecting more likely a temporary shock. In this setting, x̂t+1
t,t = x̂tt,t

because the worst-case scenario estimate of the time t hidden state is the same from the

perspective of the agent at time t and time t+ 1.

Given our experiment, there are no shocks following period t, so rt+1 = ρxt = ρα. Thus,

x̂t+1
t+1,t+1 = ραKt

t + ραKt+1
t+1(1−Kt

t)

and under the benchmark parameterization Kt
t = 0.04 and Kt+1

t+1 = 0.07. It then follows that

x̂t+1
t+1,t+1 > x̂tt,t

At time t there was an appreciation caused by the positive α, but, more importantly, because

the estimate of the hidden state at t+1 is higher than at time t, a further appreciation occurs

at t+ 1 :

0 > st > st+1

At time t+ 2, if the agent can distort only 2 periods as in the benchmark specification then,

as Remark 1 stated, σV,(t+2),t = σV = 0 and σV,(t+2),t+1 = σV,(t+2),t+2 = σHV . If there would be

no restriction on n, so that the agent can distort any period then σV,(t+2),t = σV,(t+2),t+1 =

σV,(t+2),t+2 = σHV . A similar argument applies for future periods. Eventually, the estimate of

the hidden state converges to the RE case.

The top plot in Figure 4 shows the evolution of st in the benchmark specification in which

the agent distorts the sequence σV (rt) only for n = 2 periods. There the shock occurs in

period 2. The rational expectations model predicts overshooting so the peak of the response

is at period 2. With ambiguity aversion and n = 2, the peak response occurs 2 periods

later than in the rational expectations model. There is a gradual appreciation until period
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Figure 4: Delayed overshooting
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4, followed by a depreciation after the estimates of the hidden state converge under the

distorted and rational expectations. The bottom plot is one in which there is no restriction

on n, i.e. n = t. The agent can distort any period of the sample she observes, and in this

case she does so by choosing a low precision of the signal for every period. In this case the

appreciation is much more gradual and the peak is 14 periods later than the time of the shock.

This plot also reproduces the intuition for the persistent delayed overshooting in Gourinchas

and Tornell (2004). However, as I argued in the discussion of the statistical plausibility of

the distorted sequences, such a specification implies a very unlikely interpretation of the

observed sample. In fact, as the sample size increases such distorted sequences generate

likelihoods that become increasingly lower than the ones under the reference model.

The conclusion from Figure 4 is that the model can generate qualitatively the delayed

overshooting implication. The benchmark specification implies a quick peak and a short-

lived deviation from UIP since the agent is limited in distorting the time-varying precision

of signals by statistical plausibility considerations. When these considerations are absent,

the model delivers significantly longer delayed overshooting.

5.4 A modified carry trade strategy

A further empirical implication of the model is that there are conditioning variables that can

improve upon the ex-post profitability of the carry trade. Recall that the standard carry trade
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was to borrow in the low interest rate currency and lend in the high interest rate currency.

The conditioning variable in that strategy was the sign of the interest rate differential. The

model predicted ex-post positive payoffs to the strategy because of the underestimation

of the hidden state controlling the investment differential, i.e. the differential between

the high and the low interest rate. Part of the agents’ optimal response to news was to

underreact to increases in the investment differential. Thus, if one conditions on the size of

the innovation in the investment differential, the model predicts significant differences in the

ex-post profitability of the speculation strategy.

As evident from the optimal decision rule in (4.6) or from the experiment of the delayed

overshooting, the higher the innovation is at time t in the investment differential, the smaller

x̂tt,t| is compared to the estimate under RE, |x̂REt,t |, the larger is |EP̃
t st+1 − EP

t st+1| and thus

the larger is the ex-post profitability of the carry trade. Thus, a modified carry trade strategy

suggested by the model is the following:

zt+1 = rt − (st+1 − st) if rt > EP̃
t−1rt > 0 (5.6)

zt+1 = (st+1 − st)− rt if rt < EP̃
t−1rt < 0

The strategy differs from the standard one in (5.4) by conditioning the direction of the

speculation not only on the sign of rt but also on the size of the innovation in the investment

differential. When taking this implication to the data, I will make use of the innovation under

the true DGP, EP
t−1rt, since EP̃

t−1rt is not readily observed. Since in the model sign[(EP
t−1rt−

EP̃
t−1rt)rt] > 0 the modified carry trade strategy can be made more stringent by conditioning

on (rt − EP
t−1rt) :

zt+1 = sign(rt)[rt − (st+1 − st)] if rt(rt − EP
t−1rt) > 0. (5.7)

In the benchmark parameterization EP
t−1rt = ρx̂REt−1,t−1 which can be computed by using the

reference sequence of constant variances σV . When σV = 0 this implies EP
t−1rt = ρrt−1.

Table 8 presents the model implied payoffs to the modified carry trade payoffs described

in (5.7).24 It shows that the ex-post profitability of this modified carry trade is much larger

in the model.

Table 9 analyzes a similar strategy in the data. For that, I compute EP
t−1rt by finding the

AR(p) representation that fits best, in terms of the BIC criterion, the interest rate differential

24It should be noted that the payoffs are computed only over the time periods when this strategy is
“active”. As the strategy in (5.7) implies, there are periods in which neither of the conditions deciding the
investment direction is satisfied. The same way periods of inaction were excluded from the computation of
the payoffs to the standard carry trade strategy reported in Table 6, the periods of inaction implied by this
strategy are not included. The payoffs are reported as N = 1000 simulations with a time length of T = 300.
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Table 8: Model implied statistics for the modified carry trade payoffs

Mean Standard Sharpe Skewness Kurtosis
Deviation Ratio

0.007 0.0162 0.43 −0.135 5.83
(0.0007) (0.001) (0.04) (0.22) (0.7)

characterizing each country pair analyzed. Table 9 reports the average statistics across the

country pairs analyzed. Row (1) reports results for the carry trade strategy described in

(5.7). It shows that such a modified strategy outperforms the standard carry strategy by

generating a higher mean return. In Appendix C, Table 12 provides detailed statistics for

each country pair for this strategy. For 15 out of the 16 countries analyzed, the modified

carry trade delivers higher payoffs.

As noted, the reason why the modified strategy outperforms the standard strategy in

the model is that it conditions on positive innovations in the investment currency which

are incorporated slowly in the estimates of the hidden state. By this logic, the model

also implies that when the modified strategy conditions on innovations that are not only

positive but increasingly larger than a positive number, the modified strategy performs ex-

post increasingly better because the investment currency is increasingly likely to appreciate

ex-post. If I define the payoffs to the modified strategy as following the rule in (5.8), then

the model implies that the average ex-post payoffs are increasing in the threshold µ :

zt+1 =

{
[rt − (st+1 − st)] if rt > 0, (rt − EP

t−1rt) > µ > 0

[(st+1 − st)− rt] if rt < 0, (rt − EP
t−1rt) < −µ < 0

}
(5.8)

Table 9: Standard and modified carry trade payoffs, empirical averages

Averages Standard carry trade payoffs Modified carry trade payoffs
Mean Standard Sharpe Mean Standard Sharpe

Deviation Ratio Deviation Ratio
(1) 0.0041 0.031 0.133 0.0052 0.031 0.171
(2) 0.0041 0.031 0.133 0.0073 0.034 0.214
(3) 0.0041 0.031 0.133 0.0109 0.036 0.295

To evaluate this implication in the data, I construct payoffs based on (5.8) where I vary

µ. Row (1) in Table 9 implicitly set µ = 0. Row (2) in Table 9 reports such results for

µ = 0.5σ(rt − EP
t−1rt), where σ(rt − EP

t−1rt) denotes the sample standard deviation of the
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innovations rt − EP
t−1rt. In row (3) of Table 9, µ is increased to σ(rt − EP

t−1rt). These two

thresholds produce average monthly Sharpe ratio that are around 60% and 120% respectively

larger than for the standard carry trade. The conclusion from these empirical exercises is that

the modified carry trade strategies can generate average payoffs that are much larger than

the standard carry trade and that this ex-post profitability is increasing with the threshold

µ. Such results provide further support for the model’s implications.

6 Conclusions

This paper contributes to the theoretical literature that attempts to explain the observed

deviations from UIP through systematic expectational errors. Such an approach is motivated

by the empirical literature based on survey data for the foreign exchange market that finds

significant evidence against the rational expectations assumption and the empirical research

that challenges the time-varying risk assumption.

I present a model of exchange rate determination which features signal extraction by an

ambiguity averse agent that is uncertain about the precision of the signals she receives. When

deciding on the optimal investment position, the agent is estimating the time-varying hidden

state of the exogenous observed interest rate differential. In equilibrium, the agent invests

in the higher interest rate currency (investment currency) by borrowing in the lower interest

rate currency (funding currency). The agent entertains the possibility that the data could

have been generated by various sequences of time-varying signal to noise ratios. Faced with

uncertainty agents choose to act on pessimistic beliefs so that, compared to the true DGP,

they underestimate the hidden state of the differential between the interest rate paid by the

bonds in the investment and funding currency. Given the assumed structure of uncertainty,

agents underestimate the hidden state by reacting in equilibrium asymmetrically to signals

about it: they treat positive innovations, which in equilibrium are good news for the investor,

as reflecting a temporary shock, but negative innovations, which are bad news in equilibrium,

as signaling a persistent shock.

The systematic underestimation implies that agents perceive on average positive innova-

tions when updating the estimate. This creates the possibility of a further increased demand

next period for the investment currency and a gradual appreciation of it. Thus the model

can provide an explanation for the UIP and delayed overshooting puzzle.

I find through model simulation that the benchmark specification generates an asymptot-

ically negative UIP regression coefficient. In small samples the magnitude of the coefficient

is similar but it is less significant statistically. In comparative statistics exercises I find

that the coefficient becomes positive, even though smaller than one, if the true DGP is
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characterized by a significantly less persistent hidden state and larger temporary shocks.

The benchmark specification also imposes constraints on the set of possible distortions that

the agent contemplates implying that the equilibrium subjective probability distribution is

close statistically to the objective ones. If these constraints are relaxed, the same qualitative

results hold but quantitatively they become stronger.

The model provides a unified explanation for the main stylized facts of the excess currency

payoffs: predictability, negative skewness and excess kurtosis. Predictability is directly

related to the ex-post failure of UIP: investing in the investment currency by borrowing

in the lower funding currency delivers positive payoffs. The benchmark calibration implies

positive but smaller and less variable excess payoffs than in the data. The negative skewness

is caused by the asymmetric response to news. On one hand, when the interest rate of

the investment currency decreases compared to the market’s expectation agents respond

strongly to this negative news and the investment currency depreciates more than in the

rational expectations model. On the other hand, when there is a positive innovation in

this interest rate agents underreact to this information and the currency appreciates slower.

Excess kurtosis is a manifestation of the fact that the equilibrium interaction between the

subjective and objective probability distribution implies small excess payoffs more often.

The model predicts that modified carry trade strategies can be implemented that are

characterized by significantly higher ex-post profitability than the standard carry trade. The

conditioning variable for such more profitable strategies is the innovation in the investment

differential, i.e. the differential between the higher interest rate and the lower interest

rate. When this innovation is positive the model implies a gradual incorporation of its

informational content thus predicting a higher likelihood of observing ex-post an appreciation

of the investment currency. In fact, the larger the positive innovation is, the higher is such

a probability. Implementing such strategies in the data, I find that, as the model suggests,

they do generate significantly higher Sharpe ratios than the standard carry trade.

The theory proposed in this paper can be applied to other settings that involve forecasta-

bility of excess returns. Bacchetta et al. (2008) use survey data to conclude that most of

the predictability of excess returns in bond, stock and foreign exchange market is caused by

predictability of expectational errors. Interestingly, in the stock market similar momentum

strategies and impulse responses as the delayed overshooting puzzle have been documented

(as for example in Hong and Stein (1999)) in which stock prices tend to respond slowly to

new public releases. The model analyzed in this paper proposes dynamic filtering of signals

with uncertain precision as a mechanism to generate predictable expectational errors and

excess returns.
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APPENDIX

A Unstructured uncertainty

The multiplier preference is the modification to the expected utility that involves solving the

problem:

max
b

min
P̃∈Φ

EP̃ [U(c(b; ε))] + θR(P̃ |P ) (A.1)

where U(c(b; ε)) is the utility function derived from the consumption plan c(b; ε) , with b

being the control and ε the underlying stochastic process. The parameter θ is controlling

the level of uncertainty aversion and Φ is a closed and convex set of probability measures

and R(P̃ |P ) is the relative entropy of probability measure P̃ with respect of measure P :

R(P̃ |P ) =

{∫
Ω

log(dP̃
dP

)dP̃ if P̃ is absolutely continuous w.r.t P

∞ otherwise

}
(A.2)

Hansen and Sargent (2008b) refer to the situation in which there is no restriction on the

nature of Φ as unstructured uncertainty. For this case, as shown for example in Strzalecki

(2007) the problem in (A.1) is equivalent to25:

max
b
EP [− exp(−1

θ
U(c(b; ε))]

In the present case, where U(c(b; ε) = bt(st+1 − st − rt), using the multiplier preferences

would be equivalent to maximizing a negative exponential utility under the reference P :

max
b
EP [− exp(−1

θ
btqt+1)]

In the case of normality of qt+1 this would in turn be equivalent to maximizing a mean-

variance utility with an absolute risk aversion of 1
θ

so that the results of section 5.1 can be

used to show that for the present setup introducing the variance channel generates minimal

risk corrections.

In the above formulas, the alternative measure P̃ was taken with respect to the interest

rate differential, thus allowing unstructured uncertainty around the reference process of

rt. If one instead focuses on uncertainty about xt, then from work such as Hansen and

25The equivalence is true in a Savage setting. This result is well known in the decision theory literature
and in the literature on large-deviations. For a meaningful distinction between the two preferences Strzalecki
(2007) stresses the importance of using the Anscombe-Aumann setting, where objective risk coexists with
subjective uncertainty.
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Sargent (2007), it is not clear that the qualitative results are the same. However, in the

present setup with risk-neutrality it is equivalent to use unstructured uncertainty about rt

or “unstructured” uncertainty on xt.To illustrate this, consider the problem in which the

agent takes the process in (2.1) as an approximated model and she surrounds it with a set

of alternative models such as:

rt+1 = xt+1 + σV vt+1 + εt+1

xt = ρxt−1 + σUut

The shocks εt can have non-linear dynamics that feed back on the history of the state

variables. Thus rt+1, conditional on xt, is distributed N(Fxt + εt+1, σ
2
U + σ2

V ). Under RE,

the hidden state xt is distributed N(x̂REt,t ,Σt,t) where x̂REt,t is the estimate under Kalman Filter

for (2.1). In this setting, Hansen and Sargent (2007) propose two robustness corrections: one

that distorts rt+1, conditional on xt, through the mean of (εt+1) and another that distorts

the distribution over the hidden state. Hansen and Sargent (2007) analyze the case in

which the reference model for the hidden state is given by the Kalman Filter applied to

the approximating state-space representation (2.1). Hence xt is distributed as N(x̂REt,t +

εt,Σt,t) and εt is the arbitrary unknown conditional mean distortion of the hidden state.

These alternative models are constrained to be close to the approximating model by using

the conditional relative entropy defined in (A.2) above. After taking into account these

distortions the maximization occurs under the transformed conditional distribution

rt+1
P̃∼ N(ρx̂REt,t + ρεt + εt+1, ρ

2Σt,t + σ2
U + σ2

V ). (A.3)

Note that under the reference model

rt+1
P∼ N(ρx̂REt,t , ρ

2Σt,t + σ2
U + σ2

V ) (A.4)

The relative entropy in (A.2) for the implied distributions P̃ in (A.3) and P in (A.4) is:

R(P̃ |P ) =
(ρεt + εt+1)2

2(ρ2Σt,t + σ2
U + σ2

V )

Denote the overall distortion ρεt + εt+1 by ωt+1 and use that V arPt (rt+1) = ρ2Σt,t +σ2
U +σ2

V .

The multiplier preferences defined in (A.1) imply:

max
bt

min
ωt+1

EP̃
t [bt(st+1 − st − rt)] + θ

ω2
t+1

2V arPt (rt+1)
(A.5)
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To solve for an equilibrium in this setup use a guess and verify approach and conjecture

that the solution for st+1 is st = a1x̂
RE
t,t + a2rt with unknown coefficients a1 and a2. Then

EP̃
t (st+1) = a1E

P̃
t (x̂REt+1,t+1) + a2E

P̃
t (rt+1). Using the fact that the estimate at time t + 1 is

formed by the Kalman filter updating formulas, I get EP̃
t (st+1) = (a1 + a2)ρx̂REt,t + (a1K +

a2)ωt+1. Replacing EP̃
t (st+1) in (A.5) and taking the FOC with respect to ωt+1 I obtain

ωt+1 = −V ar
P
t (rt+1)

θ
bt(a1K + a2)

In equilibrium the same market clearing condition holds and bt = .5st. The FOC with respect

to bonds requires st = EP̃
t (st+1)− rt. Substituting the solution for ωt+1 and rearranging the

risk-neutral UIP condition becomes:

st = [1 + (a1K + a2)2V ar
P (rt+1)

2θ
]−1[(a1K + a2)ρx̂REt,t − rt]

Using that the conditional variance of the exchange rate is V arP (st+1) = (a1K+a2)2V arP (rt+1),

the following conditions are satisfied when verifying the guess for the conjecture about st :

a2 = −[1 +
V arP (st+1)

2θ
]−1 (A.6)

a1 = [1 +
V arP (st+1)

2θ
]−1(a1 + a2)ρ (A.7)

This is exactly the solution described in (3.1) with c = 1
θ
V ar(st+1). With the market

clearing condition of bt = .5st the implied UIP regression coefficient has been shown in

section 5 to be marginally smaller than 1 because such risk corrections are very small in this

setup.

B Distorted expectations model equations

Proof of Proposition 1:

The estimate of the hidden state controls the expected interest rate differential. Its law

of motion is driven by the Kalman filter as defined in (4.1):

EP̃
t (rt+1) = ρx̂tt,t = ρx̂tt−1,t−1 +Kt

t(rt − ρx̂tt−1,t−1).
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From (4.1):

∂Kt
t

∂σ2
V,(t),t

= −(ρ2Σt
t−1,t−1 + σ2

U)[(ρ2Σt
t−1,t−1 + σ2

U) + σ2
V,(t),t]

−2 < 0. (B.1)

Thus
∂x̂tt,t
∂σV,(t),t

=
∂x̂tt,t
∂∂Kt

t

∂Kt
t

∂σ2
V,(t),t

=
∂Kt

t

∂σ2
V,(t),t

(rt − ρx̂tt−1,t−1).

By the definition of end-of-life wealth, we have: Wt+1 = bt[st+1 − st − rt].
Combining the various partial derivatives involved, I get the effect of σV,(t),t on EP̃

t Wt+1:

∂EP̃
t Wt+1

∂σ2
V,(t),t

=
∂EP̃

t Wt+1

∂EP̃
t st+1

∂EP̃
t (st+1)

∂EP̃
t rt+1

∂x̂tt,t
∂σV,(t),t

sign

[
∂EP̃

t Wt+1

∂σ2
V,(t),t

]
= sign

[
bt
∂EP̃

t (st+1)

∂EP̃
t rt+1

∂Kt
t

∂σ2
V,(t),t

(rt − Fx̂tt−1,t−1)

]
. (B.2)

Using Conjecture 1 that in equilibrium expected exchange rate is decreasing in the average

interest rate differential, i.e. that
∂EP̃

t (st+1)

∂EP̃
t rt+1

< 0 and the fact that
∂Kt

t

∂σ2
V,(t),t

< 0, we get a

sharper prediction on the sign in (B.2):

sign

[
∂EP̃

t Wt+1

∂σ2
V,(t),t

]
= sign

[
bt(rt − Fx̂tt−1,t−1)

]
.

This establishes Proposition 1.

Proof of Remark 1:

The recursion of the Kalman filter implies that:

x̂tt,t = (1−Kt
t)ρx̂

t
t−1,t−1 +Kt

trt = Kt
trt +

t∑
j=1

ρjKt
t−jrt−j

[
j−1∏
i=0

(1−Kt
t−i)

]
.

Suppose that the first time going backwards in the sequence t, ..., 0 when the Kalman gain

is equal to one is time m, i.e. Kt
m = 1 and Kt

s < 1 for all t ≥ s > m. Then:

x̂tt,t = Kt
trt +

t−m∑
j=1

ρjKt
t−jrt−j

[
j−1∏
i=0

(1−Kt
t−i)

]
+

t∑
j=t−(m−1)

ρjKt
t−jrt−j

[
j−1∏
i=0

(1−Kt
t−i)

]

= Kt
trt +

t−m∑
j=1

ρjKt
t−jrt−j

[
j−1∏
i=0

(1−Kt
t−i)

]
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since 1 −Kt
m = 0 so that all the differentials r from 0 to m − 1 receive zero weight in the

estimate x̂tt,t. Intuitively, Kt
m = 1 means that the hidden state at time m was exactly equal

to the observed differential rm so there is no more information contained in the previous

estimate x̂tm−1,m−1.

Now take the problem of the agent at time t of selecting the n dates at which to consider

realizations of σ2
V,(t),s s ≤ t different from the constant σV = 0. Take m to be the first

date going backwards from time t where the agent is considering that the realization σ2
V,(t),m

equals σV = 0. Remark 1 states that m = t−n. According to the above formula for x̂tt,t and

using the same definition for m, any observation rs with 0 < s < m receives no weight in the

estimate of x̂tt,t, independent of the realization of σ2
V,(t),s, s < m. Thus the minimization of x̂tt,t

over the n dates must involve choosing the dates n to be between m and t. This establishes

Remark 1.

B.1 Discussion of Assumption 1

Discussion on Remark 3 :

Suppose that the conjectured law of motion for st+1 takes into account the presence of

future ambiguous news. That is, take the conjectured law of motion from (4.5) and take

expectations at time t :

EP̃
t (st+1) = a1E

P̃
t (x̂t+1

t+1,t+1) + a2E
P̃
t (rt+1)

= a1E
P̃
t ρx̂

t+1
t,t + EP̃

t Kt+1(rt+1 − ρx̂t+1
t,t ) + a2ρx̂

t
t,t.

We have that

rt+1
P̃∼ N(ρx̂tt,t, ρ

2Σt
t,t + EP̃

t (σ2
V,t+1) + σ2

U)

where EP̃
t (σ2

V,t+1) = σ2
V if the agent expects that the average realized σ2

V,t+1 = σ2
V or

EP̃
t (σ2

V,t+1) = (σHV )2 if we take the approach as in Epstein and Schneider (2008) that the agent

also minimizes over the future possible realized σVt+1. The reason that σHV = arg min
σV

t+1

EP̃
t (Wt+1)

is that the correction EP̃
t Kt+1(rt+1−ρx̂t+1

t,t ) will be larger in absolute value when σV,t+1 = σHV .

Denote nt+1 ≡ rt+1 − ρx̂t+1
t,t . Then:

EP̃
t Kt+1nt+1 = EP̃

t [Kt+1nt+1|nt+1 > 0]P (nt+1 > 0) + EP̃
t [Kt+1nt+1|nt+1 < 0]P (nt+1 < 0)

(B.3)
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and the RHS of (B.3) can be rewritten to take into account the position bt+1 as:

EP̃
t [KH

t+1nt+1|nt+1 > 0]Pt[nt+1 > 0] Prt(bt+1 < 0)+

+EP̃
t [KH

t+1nt+1|nt+1 < 0]Pt[nt+1 < 0] Prt(bt+1 > 0)+

+EP̃
t [KL

t+1nt+1|nt+1 > 0]Pt[nt+1 > 0] Prt(bt+1 > 0)+

+EP̃
t [KL

t+1nt+1|nt+1 < 0]Pt[nt+1 < 0] Prt(bt+1 < 0)

(B.4)

where KH
t+1, K

L
t+1 is the Kalman gain for time t + 1 with σt+1

V,t+1 = σHV and σt+1
V,t+1 = σLV

respectively. Pt denotes the probability conditional on time t information. This asymmetric

response to news is implied by the optimal choice over σt+1
V,t+1 in (4.6) of underreacting to

positive innovations and overreacting to negative news, where “positive” and “negative” are

defined with respect to the equilibrium position bt+1 as explained in Section 4.1.

Take the first moment of a truncated normal distribution where x ∼ N(µ, σ). Then, with

φ(.) and Φ(.) denoting the pdf and cdf of a unit normal:

E(x|x ≤ a) = µ− σ
φ
(
a−µ
σ

)
Φ
(
a−µ
σ

) .
In general we want to compute E(kx) where k = kH if x ≤ a and k = kL if x > a :

E(kx) = kLE(x|x ≤ a) Pr(x ≤ a) + kHE(x|x > a)(1− Pr(x ≤ a))

E(kx) = µ

[
Φ

(
a− µ
σ

)
(kL − kH) + kH

]
− σφ

(
a− µ
σ

)
[kL − kH ]. (B.5)

Equation (B.3) features a much more complicated version of (B.5) for several reasons. The

object ρx̂t+1
t,t is generated from the perspective of the time t + 1 worst-case scenario and

in general is not equal to ρx̂tt,t. Its details are also a function of what the assumptions are

on n, the number of past periods for which the agent distorts elements of the sequence of

variances σV (rt+1) as defined in formula (2.8). Related to this is the fact that Prt(bt+1 < 0)

also appears in the evaluation of the expectation.

Such an object also appears in Epstein and Schneider (2008) except that their setup

is significantly simplified since the agents always hold the asset in the same direction and

the estimation is static. To replicate that situation one could take the approach of setting

n = t, so the agent distorts all the previous periods and impose that conditional on having an

investment direction at time t, the same direction is held next period, i.e. Pr(bt+1bt > 0) = 1.

Also take KH
t+1 and KL

t+1 to be equal to the static Kalman gain:
σ2

U

σ2
U +σ

2,(i)
V

for i = H,L
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respectively. Then (B.3) becomes:

EP̃
t Kt+1nt+1 = sign(−bt){EP̃

t [KHnt+1|nt+1 > 0] Pr(nt+1 > 0) +

+ EP̃
t [KLnt+1|nt+1 < 0] Pr[nt+1 < 0]}

and using (B.5) with nt+1 ∼ N(0, σ2) and σ = [Σ + (σHV )2 + σ2
U ]0.5:

EP̃
t Kt+1nt+1 = sign(bt)σ

1√
2π

[KL −KH ]. (B.6)

Then the expected st+1 should be:

EP̃
t (st+1) = (a1 + a2)ρx̂tt,t + a1sign(bt)σ

1√
2π

[KL −KH ].

Equation (B.5) shows the type of correction in the expectation of future st+1 that is implied

by taking into account the asymmetric response to future news. Take for example the case

in which bt < 0 so the agent invests at time t in the domestic currency. Then, because a1 < 0

the expected st+1 is larger by |a1|δ, with δ = σ 1√
2π

[KL −KH ] > 0. Thus, there is a higher

expected depreciation and

st = EP̃
t (st+1)− rt = (a1 + a2)ρx̂tt,t + |a1|δ.

If the conjectured law of motion takes this constant into account as:

EP̃
t (st+1) = a1E

P̃
t (x̂t+1

t+1,t+1) + a2E
P̃
t (rt+1) + |a1|δ

then by the equilibrium UIP equation:

st = EP̃
t (st+1)− rt = (a1 + a2)ρx̂tt,t + 2|a1|δ

and there is no conjectured law of motion that in equilibrium implies consistency of beliefs

and equates st with EP̃
t (st+1) − rt because there is no discounting of the constant δ in the

asset pricing equation, in contrast with the model of Epstein and Schneider (2008). This

concludes the discussion on Remark 3.

Proof of Remark 4 :

Forming expectations according to the conjectured law of motion in (4.5):

EP̃
t (st+1) = a1E

P̃
t (x̂t+1

t+1,t+1) + a2E
P̃
t (rt+1).
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Under the true DGP, the average realized st+1 is:

EP
t st+1 = a1E

P
t (x̂t+1

t+1,t+1) + a2E
P
t (rt+1) (B.7)

EP
t st+1 = a1[EP

t ρx̂
t+1
t,t + EP

t Kt+1(rt+1 − ρx̂t+1
t,t )] + a2ρx̂

RE
t,t .

Take for example bt < 0 so that x̂tt,t < x̂REt,t . The average EP
t st+1 is different from EP̃

t (st+1)

due to two factors: First, EP̃
t (rt+1) < EP

t (rt+1), which activates a channel that allows for

a possible ex-post average appreciation, i.e. EP
t st+1 < EP̃

t (st+1). Second, the asymmetric

response to signals next period when agents overreact to negative innovations and underreact

to positive innovations is implied by EP
t Kt+1(rt+1− ρx̂t+1

t,t ) < KEP
t (rt+1− ρx̂t+1

t,t ), creating a

channel that works against the average ex-post appreciation.

As long as the overall effect is that EP
t st+1 < EP̃

t (st+1) the following argument can be

made: suppose the agent at time t observes the average EP
t st+1 and conjectures that this is

indeed generated by the law of motion in (4.5). Then,

EP
t (st+1) = (a1 + a2)EP

t rt+1 < EP̃
t (st+1) = (a1 + a2)EP̃

t rt+1

where EP
t is formed under what is perceived by the agent at time t as possibly having

generated the true data. However, we have from (B.7) that for the true EP
t st+1:

EP
t st+1 > (a1 + a2)EP

t rt+1

because of the average asymmetric response. Then, because (a1 + a2) < 0 :

EP̃
t rt+1 < EP

t rt+1 < EP
t rt+1. (B.8)

By construction, the agent does not know the true DGP, so after observing EP
t st+1 <

EP̃
t (st+1) and using the conjecture that st+1 is controlled by the law of motion the agent

would conclude that st+1 has depreciated less ex-post because her expected rt+1, E
P̃
t rt+1,

was lower than the possible true DGP, i.e. EP̃
t rt+1 < EP

t rt+1. This is consistent with the

fact that the agent at time t was acting upon the conjectured law of motion and under a

sequence of variances as in (2.2) that was minimizing expected payoffs:

min
P̃∈Λ

EP̃
t (rt+1) (B.9)

Thus, if the set Λ contains the distributions implied by P and P, then the observed EP
t st+1 <

EP̃
t (st+1) is consistent with the minimization in (B.9) and the conjectured law of motion as
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in (4.5).

The key element in this argument is that the first channel dominates so that EP
t st+1 <

EP̃
t (st+1). If, for example, there are no dynamics coming from the underestimation of the

hidden state at time t then the asymmetric response to news at time t+ 1 will generate an

average higher than expected depreciation, i.e. EP
t st+1 > EP̃

t (st+1), which will imply that

EP̃
t rt+1 > EP

t rt+1 being inconsistent with the minimization in (B.9). A similar argument

applies for the case of bt > 0 where the inequalities above should be reversed. This establishes

Remark 4.

B.2 A general numerical solution procedure for the ambiguity

aversion model

Under the conjectured law of motion and Assumption 1, expected exchange rate is given by

(4.11). Proposition 2 stated for the special case of σV = 0 then st = a1x̂
t
t,t + a2rt, where

a1, a2 are the same analytical coefficients as in equations (3.7) and (3.7) respectively, that

characterize the rational expectations case. For the case σV > 0 a more general numerical

procedure is required to recover the coefficients a1, a2.

The solution to the ambiguity aversion equilibrium can be summarized by the following

steps:

1. Start with an initial guess about a1, a2.

2. For each t, make a guess about the sign of bt to use in (4.6).

3. Use (4.6) and call the resulting optimal sequence σ∗V (rt). Use the Kalman filter based

on the sequence σ∗V (rt) to form an estimate for x̂tt,t and Σt
t,t.

4. Draw realizations for rt+1 from N(ρx̂tt,t, ρ
2Σt

t,t+σ
2
U), where Σt

t,t is defined in (4.2). Form

the sample rt+1 = (rt, rt+1). For each realization perform Steps 2 and 3 above to obtain the

sequence σ∗V (rt+1).

5. For each realization in step 4 use σ∗V (rt+1) to compute x̂t+1
t+1,t+1 and use the conjecture

in (4.5) to generate a realized st+1 = a1x̂
t+1
t+1,t+1 + a2rt+1.

6. The distribution of st+1 in step 5 defines the subjective probability distribution for

the agent at time t. Use the FOC (4.10) to solve for s∗t .

7. If sign(s∗t ) = sign(bt) the solution is σ∗V (rt) and s∗t and an indicator function it = 1.

If sign(s∗t ) 6= sign(bt), switch the sign of the initial guess in step 2.

8. If there is no convergence on the sign of s∗t and bt, the solution is b∗t = s∗t = 0 and the

indicator function it = 0.

9. Regress s∗t on ã1x̂
t
t,t and ã2rt for all the t when it = 1. If mini |ai − ãi| > ε, then

reiterate from step 1 with ai = ãi. If not then stop and the minimizing coefficients are ãi.
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Point 8 of this iteration is related to the discussion in 4.2 which describes how the bond

solution to the problem in (4.7) can be the kinked solution bt = 0.

B.3 Risk aversion and distorted expectations model equations

Proof of Proposition 3 :

The variance V arP̃t Wt+1 = b2
tV ar

P̃
t st+1. In turn, using the conjecture (4.5), Assumption

1 and taking as given x̂t+1
t,t , K

t+1
t+1 :

V arP̃t st+1 = (a1K + a2)2[ρ2Σt
t,t + σ2

U ].

Use the formula in (4.5) for the Kalman gain and the recursion Σt
t,t = Σt

t,t−1(1−Kt). Then,

∂Σt,t

∂σ2
V,(t),t

=
∂Σt,t

∂Kt

∂Kt
t

∂σ2
V,(t),t

> 0.

Thus,

∂V arP̃t Wt+1

∂σ2
V,(t),t

> 0.

This establishes Proposition 3.

To study the effect of σ2
V,(t),t on the utility consider the total partial derivative:

∂Vt
∂σ2

V,(t),t

=
∂Vt

∂EP̃
t st+1

∂EP̃
t st+1

∂EP̃
t rt+1

∂EP̃
t rt+1

∂σ2
V,(t),t

+
∂Vt

∂V arP̃t st+1

∂V arP̃t st+1

∂V arP̃t rt+1

∂V arP̃t rt+1

∂σ2
V,(t),t

.

The sign of this derivative is :

sign(
∂Vt

∂σ2
V,(t),t

) = sign(bt)sign(rt − ρx̂tt−1,t−1)− sign(
∂V arP̃t rt+1

∂σ2
V,(t),t

).

Since sign(
∂V arP̃

t rt+1

∂σ2
V,(t),t

) > 0, if the sign of sign(bt)sign(rt − ρx̂tt−1,t−1) is also positive then the

sign of ∂Vt

∂σ2
V,(t),t

is ambiguous. To study that case, compute

∂Vt
∂σ2

V,(t),t

= −(a1K + a2)ρbt(rt − ρx̂tt−1,t−1)(ρ2Σt
t−1,t−1 + σ2

U)[ρ2Σt
t−1,t−1 + σ2

U + σ2
V,(t),t]

−2

+(1− γ)(a1K + a2)2b2
tρ

2[ρ2Σt
t−1,t−1 + σ2

U ]2[ρ2Σt
t−1,t−1 + σ2

U + σ2
V,(t),t]

−2.

By the filtering solution (rt−ρx̂tt−1,t−1) = (ρ2Σt
t−1,t−1 +σ2

U +σ2
V,(t),t)

0.5ξt, where ξt ∼ N(0, 1).
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To investigate the ambiguous case compute P
[
(∂Vt/∂σ

2
V,(t),t) > 0|(btξt > 0)

]
which equals

P{btξt > (1− γ)(a1K + a2)ρb2
t

(ρ2Σt
t−1,t−1 + σ2

U)[
ρ2Σt

t−1,t−1 + σ2
U + σ2

V,(t),t

]0.5 |(btξt > 0)} (B.10)

To get an upper bound on the probability take the case of K = 1,Σt
t−1,t−1 = 0 and σ2

V,(t),t = 0.

In this case, if bt > 0 then (B.10) becomes:

Pr[ξt > (1− γ)(a1 + a2)ρbtσU |ξt > 0].

Adding to the benchmark parameterization γ = 10 and noting that bt = 0.5st with the

model-implied standard deviation of st around 0.025 the probability that the expected return

channel dominates is close to one. A similar calculation applies for bt < 0.

C Supplementary tables

Table 10: ML estimates of a state space representation with constant volatilities

Austria† Belg.† Canada France† Germ.† Italy† Japan Neth.† Switz. UK
ρ 0.99 0.96 0.99 0.99 0.98 0.98 0.98 0.99 0.98 0.99

(0.007) (0.016) (0.004) (0.007) (0.007) (0.015) (0.014) (0.008) (0.011) (0.008)
σV 1.75 0.33 0.87 0.001 0.12 0.0012 3.8415 0.0001 3.93 0.0001

(0.72) (3.72) (0.49) (2.2) (8.38) (2.36) (0.69) (0.56) (0.86) (0.68)
σU 5.92 5.75 4.04 5.28 5.92 5.69 5.75 3.67 7.82 3.71

(0.47) (0.49) (0.26) (0.24) (0.42) (0.323) (0.71) (0.21) (0.82) (0.21)

The state-space representation is described in (2.1). The sample is M1 1981-M12 2007 except for
countries † for which data ends in M12:1998. The entries in the columns for the standard deviations
σV , σU are reported as the estimated values ×1000. Standard errors are in parentheses.
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Table 11: Empirical UIP regression and carry trade payoffs

UIP regression Carry trade payoffs

Country α̂ β̂ Mean Standard Sharpe Skewness Excess Kurtosis
Deviation Ratio

Austria† 0.003 -1.01 0.0022 0.034 0.064 -0.145 0.785
(0.002) (0.73) (0.0022) (0.002) (0.067) (0.175) (0.397)

Belgium† 0.000 -0.66 0.0069 0.033 0.208 -0.0003 0.904
(0.002) (0.64) (0.0020) (0.002) (0.062) (0.229) (0.431)

Canada 0.000 -0.6 0.0019 0.016 0.115 -0.501 1.273
(0.001) (0.5) (0.0009) (0.001) (0.055) (0.157) (0.46)

Denmark 0.000 -0.63 0.0083 0.030 0.276 -0.128 0.838
(0.002) (0.47) (0.0017) (0.001) (0.059) (0.140) (0.405)

France† 0.000 0.06 0.0053 0.032 0.168 -0.044 0.437
(0.003) (0.71) (0.0020) (0.002) (0.062) (0.154) (0.311)

Germany† 0.003 -0.66 0.0012 0.034 0.035 -0.183 0.475
(0.002) (0.83) (0.0022) (0.002) (0.065) (0.127) (0.313)

Ireland† 0.000 0.38 0.0053 0.032 0.165 -0.021 0.354
(0.003) (0.98) (0.0023) (0.002) (0.072) (0.178) (0.375)

Italy† -0.001 0.26 0.0027 0.030 0.091 -0.332 1.116
(0.003) (0.4) (0.0021) (0.002) (0.07) (0.242) (0.564)

Japan‡ 0.01 -2.55 0.0028 0.035 0.08 -0.67 1.706
(0.003) (0.69) (0.0020) (0.002) (0.059) (0.249) (0.9)

Netherlands† 0.004 -1.68 0.0035 0.034 0.103 -0.122 0.625
(0.002) (0.81) (0.0023) (0.002) (0.068) (0.209) (0.391)

Norway 0.000 -0.51 0.0052 0.029 0.183 -0.191 1.121
(0.002) (0.5) (0.0014) (0.001) (0.05) (0.1720 (0.434)

Portugal† -0.002 0.45 0.0042 0.032 0.131 -0.071 2.385
(0.003) (0.25) (0.0021) (0.002) (0.065) (0.379) (0.972)

Spain† 0.002 0.75 0.0032 0.032 0.102 -0.723 2.081
(0.003) (0.52) (0.0024) (0.002) (0.076) (0.350 (1.429)

Sweden 0.000 0.36 0.0059 0.030 0.199 -0.78 3.229
(0.002) (0.69) (0.0015) (0.002) (0.058) (0.35) (1.476)

Switzerland 0.007 -1.40 0.0009 0.035 0.025 -0.23 0.668
(0.003) (0.68) (0.0020) (0.002) (0.056) (0.204) (0.447)

UK -0.002 -1.67 0.0057 0.030 0.191 -0.028 2.602
(0.002) (0.85) (0.0015) (0.002) (0.050) (0.374) (0.99)

Average 0.001 -0.57 0.0041 0.031 0.133 -0.261 1.254

Notes: The first 2 columns report estimates of the regression:St+1/St−1 = α+β(Ft/St−1)+εt+1.
Both Ft and St are USD/FCU. Heteroskedasticity-robust standard errors are in parentheses. Carry
trade payoffs are measured in USD, per dollar bet. The sample of monthly data is M1:1976 to
M7:2008, except for countries (†) for which data ends in M12:1998 and Japan for which data begins
on M7:1978.
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Table 12: Standard and modified carry trade payoffs

Standard carry trade payoffs Modified carry trade payoffs

Country Mean Standard Sharpe Mean Standard Sharpe
Deviation Ratio Deviation Ratio

Austria† 0.0022 0.034 0.064 0.0043 0.033 0.129
(0.0022) (0.002) (0.067) (0.0026) (0.002) (0.077)

Belgium† 0.0069 0.033 0.208 0.0082 0.033 0.246
(0.0020) (0.002) (0.062) (0.0024) (0.002) (0.069)

Canada 0.0019 0.016 0.115 0.0033 0.015 0.215
(0.0009) (0.001) (0.055) (0.0009) (0.001) (0.061)

Denmark 0.0083 0.030 0.276 0.0088 0.030 0.289
(0.0017) (0.001) (0.059) (0.0020) (0.002) (0.066)

France† 0.0053 0.032 0.168 0.0071 0.032 0.219
(0.0020) (0.002) (0.062) (0.0022) (0.002) (0.069)

Germany† 0.0012 0.034 0.035 0.0030 0.034 0.089
(0.0022) (0.002) (0.065) (0.0027) (0.002) (0.078)

Ireland† 0.0053 0.032 0.165 0.0058 0.031 0.185
(0.0023) (0.002) (0.072) (0.0025) (0.002) (0.080)

Italy† 0.0027 0.030 0.091 0.0040 0.030 0.131
(0.0021) (0.002) (0.07) (0.0022) (0.002) (0.077)

Japan‡ 0.0028 0.035 0.08 0.0017 0.035 0.048
(0.0020) (0.002) (0.059) (0.0024) (0.003) (0.070)

Netherlands† 0.0035 0.034 0.103 0.0051 0.033 0.154
(0.0023) (0.002) (0.068) (0.00260 (0.002) (0.078)

Norway 0.0052 0.029 0.183 0.0067 0.029 0.230
(0.0014) (0.001) (0.05) (0.0018) (0.002) (0.063)

Portugal† 0.0042 0.032 0.131 0.0048 0.031 0.155
(0.0021) (0.002) (0.065) (0.0022) (0.002) (0.069)

Spain† 0.0032 0.032 0.102 0.0046 0.033 0.139
(0.0024) (0.002) (0.076) (0.0024) (0.002) (0.074)

Sweden 0.0059 0.030 0.199 0.0064 0.029 0.217
(0.0015) (0.002) (0.058) (0.00150 (0.002) (0.055)

Switzerland 0.0009 0.035 0.025 0.0030 0.035 0.086
(0.0020) (0.002) (0.056) (0.0024) (0.002) (0.069)

UK 0.0057 0.030 0.191 0.0062 0.031 0.200
(0.0015) (0.002) (0.050) (0.0021) (0.002) (0.068)

Average 0.0041 0.031 0.133 0.0052 0.031 0.171

Notes: Similar notes as in Table 11 apply for the data. The standard carry trade payoffs
are the same as in Table 11. The modified carry trade payoffs are obtained based on the
strategy defined in (5.8), where µ=0.
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