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Abstract

In many sectors of the economy, governments either provide various services at no cost
or at highly subsidized prices. Examples are the health, education and general
government sectors. The System of National Accounts 1993 recommends valuing these
nonmarket outputs at their costs of production but it does not give much guidance on
exactly how to do this. In this paper, an explicit methodology is developed that enables
one to construct these marginal cost prices. However, in the main text, an activity
analysis approach is taken in order to simplify the analysis, so in particular, constant
returns to scale, no substitution production functions for the specific activities in the
nonmarket sector are assumed. It is shown that it is possible to obtain meaningful
measures of Total Factor Productivity growth in this framework. An Appendix relaxes
some of the restrictive assumptions that are used in the main text.
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1. Introduction

In this paper, we will examine exactly how outputs can be measured in industries such as
the health sector where reliable final demand prices are not available. The existing
national income accounting methodology suggests using cost weights as prices in this
situation2 and in the main text, we will work out the algebra for implementing this

1 The author thanks Ian Bobbin, Kevin Fox, Peter Hill, Denis Lawrence, Carl Obst, Paul Schreyer, Mick
Silver and Kam Yu for helpful discussions on this topic and the Australian Research Council and the
SSHRC of Canada for financial support. None of the above are responsible for any opinions expressed in
the paper.
2 The literature on this topic dates back to Hicks (1940).
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methodology under somewhat simplified assumptions; i.e., we will assume that each
output is produced using a constant returns to scale, no substitution type production
function. However, we will allow for technical progress; i.e., we will allow for the
introduction of new processes that deliver the same services using fewer resources.

In section 2 below, we consider the case of two processes, activities or medical
procedures and construct “industry” measures of output, input and productivity using unit
costs as weights. We find that it is possible to have productivity growth in this context.3

In section 3, we indicate that the methodology developed in section 2 can break down
under certain conditions. Thus when a new procedure is introduced that has an output
that is equivalent to the output of an existing procedure, the section 2 methodology will
give a rate of real output growth that is too small. We indicate how this problem can be
addressed.

Section 4 concludes.

An Appendix reworks the methodology when the assumption of no substitution
production functions is relaxed.

2. The Measurement of Cost Weighted Outputs Using Fixed Coefficient
Technologies

In order to minimize notational complexities, we will consider only the case of two
medical procedures such as performing an operation on a patient with reasonably
homogeneous characteristics or diagnosing a medical condition and prescribing a
treatment.4 Let the number of type i procedures performed in period t by a particular
establishment be yi

t for i = 1,2 and t = 0,1. When a type i procedure is performed in
period t, there is a vector of input requirements, ai

t  [ai1
t,ai2

t,...,aiN(i)
t] for i = 1,2,

associated with each procedure where N(i) is the number of inputs used by procedure i.5

We assume a constant returns to scale, fixed coefficients production function for each
procedure 6 and so the vector of inputs used by procedure i and period t, xi

t 
[xi1

t,xi2
t,...,xiN(i)

t], is equal to the period t input-output vector for procedure i, ai
t, times the

number of procedures of type i performed in period t, yi
t; i.e., we have the following

3 When measuring the output of nonmarket sectors, statistical agencies often assume that output growth is
equal to input growth and hence Total Factor Productivity (TFP) growth is not possible using this
methodology. However, following the work of Mai (2004), Pritchard (2004) and Atkinson (2005) in the
UK, we will show that if statistical agencies can compute input requirements per unit of output in these
nonmarket sectors, then using unit costs as price weights for outputs can lead to output growth rates that are
faster than the corresponding input growth rates and hence TFP improvements are possible in this
environment.
4 The same analysis can be applied to any nonmarket service where there are outputs that can be measured
in reasonably homogeneous quantity units. For a more realistic discussion of some of the problems that
arise when measuring health sector outputs, see Yu and Ariste (2008).
5 The vector ai

t is the vector of input-output coefficients for the ith technology in period t. Note that the
inputs include both intermediate and primary inputs.
6 These assumptions are somewhat problematic due to the existence of fixed costs in hospitals. There are
also problems associated with the allocation of overhead costs.
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relationship between the amounts of inputs used by procedure i in period t, xi
t, and the

output produced by procedure i in period t, yi
t:

(1) xi
t = ai

t yi
t ; i = 1,2 ; t = 0,1.

In each period t, there is a vector of positive input prices, wi
t  [wi1

t,wi2
t,...,wiN(i)

t] for i =
1,2, associated with each procedure and the period t cost associated with performing type
i procedures, Ci

t, is simply the sum of the product of the individual input prices win
t times

the amounts of input used in period t, xin
t:

(2) Ci
t  wi

txi
t  n=1

N(i) win
t xin

t ; i = 1,2 ; t = 0,1.

Note that the above framework allows for the possibility of technical progress in the
delivery of each procedure going from period 0 to period 1; i.e., we have not assumed
that ai

0 equals ai
1 for each procedure i or in words, we have not assumed that the vector of

input-output coefficients remains constant for each procedure. If service providers in
period 1 have access to the same technology as was used in period 0, then the following
inequalities will be satisfied:

(3) wi
1ai

1  wi
1ai

0 ; i = 1,2.

However, if there is technical progress for procedure i going from period 0 to 1, then the
weak inequality in (3) for this i will hold strictly, so that the unit cost of delivering the ith
type of service, wi

1ai
1, goes down if we use the new technology characterized by the

input output vector ai
1 compared to the unit cost of using the old technology, which is

wi
1ai

0.7

Thus if there is no technical progress going from period 0 to 1 in both procedures, the
input-output vectors remain constant so that we have:

(4) ai
0 = ai

1 ; i = 1,2.

If there is technical progress in both procedures going from period 0 to 1, then the
following inequalities hold:

(5) wi
1ai

1 < wi
1ai

0 ; i = 1,2.

We will draw on assumptions (4) and (5) subsequently.

Suppose now that we define health industry aggregates that aggregate together the inputs
and outputs of the two activities described above. It can be seen that it is straightforward

7 This definition of technical progress for sector i is weaker than the alternative definition that the vector of
period 1 input-output coefficients ai

1 be equal to or less than the corresponding period 0 vector of input-
output coefficients ai

0 with a strict inequality for at least one component; i.e., the alternative (strong)
definition of technical progress for sector i is ai

1 < ai
0 where ai

1 < ai
0 means ai

1  ai
0 but ai

1  ai
0. Our

weaker definition seems to be a more suitable one for the present purpose.
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to construct aggregate price and quantity indexes for inputs. Thus the Laspeyres industry
input quantity index QL

* can be defined as follows:8

(6) QL
*  [w1

0x1
1 + w2

0x2
1]/[w1

0x1
0 + w2

0x2
0]

= [w1
0a1

1y1
1 + w2

0a2
1y2

1]/[w1
0a1

0y1
0 + w2

0a2
0y2

0] using (1).

Similarly, the Paasche and Fisher industry input quantity indexes, QP
* and QF

*, can be
defined as follows:

(7) QP
*  [w1

1x1
1 + w2

1x2
1]/[w1

1x1
0 + w2

1x2
0]

= [w1
1a1

1y1
1 + w2

1a2
1y2

1]/[w1
1a1

0y1
0 + w2

1a2
0y2

0] using (1);

(8) QF
*  [QL

*QP
*]1/2 .

Turning now to the corresponding problem of defining industry output aggregates, we
encounter a severe problem: namely, although we can observe the output quantities for
each procedure (the yi

t), we generally will not be able to observe the corresponding
output prices.9 Without output prices, normal index number theory cannot be applied.
For many purposes (including the measurement of welfare), the desired conceptual price
for each type of medical service is a household marginal valuation price or a final
demand price; i.e., the price that a household would be willing to pay for an extra unit of
the service. But it is difficult for experts to agree on what the appropriate final demand
prices should be in the context of pricing medical services. If experts cannot agree, this
puts statistical agencies in a difficult position since their estimates of output and input
should be objective and reproducible.

Given that final demand prices are generally not available, the System of National
Accounts 1993 recommends valuing publicly provided services at their costs of
production.10 Thus in the remainder of this note, we will follow this advice and examine
the output indexes which are implied by following this recommendation in the context of
our very simple model.

8 For the definitions of the Laspeyres, Paasche and Fisher ideal price indexes, see Fisher (1922). The
corresponding quantity indexes can be obtained from the same formulae but with the roles of prices and
quantities reversed.
9 See Atkinson (2005; 88-90) for a nice discussion on the valuation of nonmarket outputs and the
differences between marginal cost and final demander valuations.
10 In particular, Chapter 16 in SNA 1993 notes that if we have quantity information on the numbers of
various different types of tightly specified medical procedures, then Laspeyres or Paasche indexes can be
calculated using sales as weights for market services and costs for nonmarket services. The situation is
summarized in paragraphs 16.133 and 16.134 of the 1993 SNA on non-market goods and services which
was written by Peter Hill. Paragraph 16.134 says: “ In principle, volume measures may be compiled
directly by calculating a weighted average of the quantity relatives for the various goods or services
produced as outputs using the values of these goods and services as weights. Exactly the same method
may be applied even when the output values have to be estimated on the basis of their costs of production.”
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The unit cost of production for procedure i in period t, pi
t, can readily be defined in our

simple model as the cost of producing one unit of the procedure using the period i
technology:

(9) pi
t  wi

tai
t ; i = 1,2 ; t = 0,1.

Using the above cost based procedure i output prices pi
t along with the corresponding

period t output quantities yi
t, we can readily define the Laspeyres, Paasche and Fisher

output quantity indexes, QL, QP and QF respectively:11

(10) QL  [p1
0y1

1 + p2
0y2

1]/[p1
0y1

0 + p2
0y2

0]
= [w1

0a1
0y1

1 + w2
0a2

0y2
1]/[w1

0a1
0y1

0 + w2
0a2

0y2
0] using (9);

(11) QP  [p1
1y1

1 + p2
1y2

1]/[p1
1y1

0 + p2
1y2

0]
= [w1

1a1
1y1

1 + w2
1a2

1y2
1]/[w1

1a1
1y1

0 + w2
1a2

1y2
0] using (9);

(12) QF  [QLQP]1/2 .

Comparing the Laspeyres and Paasche output indexes (10) and (11) with their input
counterparts (6) and (7) leads to some interesting results when we make the assumption
of no technical change in the procedures, Assumption (4), or when we make the
assumption of technical change in both procedures, Assumption (5); i.e., we can prove
the following two Propositions:

Proposition 1: If there is no technical progress going from period 0 to 1 in each procedure,
then the Laspeyres, Paasche and Fisher output indexes are exactly equal to the
corresponding Laspeyres, Paasche and Fisher input indexes; i.e., we have:

(13) QL = QL
* ;

(14) QP = QP
* ;

(15) QF = QF
* .

Proof: If (4) holds, then the second equation in (6) is equal to the second equation in (10)
which establishes (13). Similarly if (4) holds, then the second equation in (7) is equal to
the second equation in (11) which establishes (14). Finally, (15) follows from (13) and
(14). Q.E.D.

If we define productivity growth as an output index divided by an input index, then the
above Proposition tells us that there will be no Laspeyres, Paasche or Fisher productivity
growth in the industry if there is no technological progress in the procedure technologies

11 Cost weighted Laspeyres type output quantity indexes of the type defined by (10) are used widely in the
UK in recent years when constructing measures of nonmarket output quantity growth; see Mai (2004; 65),
Pritchard (2004; 78) and Atkinson (2005; 88).
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and if we use the same index number formula (Laspeyres, Paasche or Fisher) for
measuring both input and output growth.12

Proposition 2: If there is technical progress going from period 0 to 1 in each procedure,13

then the Laspeyres, Paasche and Fisher output indexes are strictly greater than the
corresponding Laspeyres, Paasche and Fisher input indexes; i.e., we have:

(16) QL > QL
* ;

(17) QP > QP
* ;

(18) QF > QF
* .

Proof: If (5) holds, then the second equation in (6) is strictly less than the second
equation in (10) which establishes (16). Similarly if (5) holds, then the second equation
in (7) is strictly less than the second equation in (11) which establishes (17). Finally, (18)
follows from (16) and (17). Q.E.D.

Thus if there is technical progress in either procedure, then the above Proposition tells us
that there will be Laspeyres, Paasche or Fisher productivity growth in the industry if we
use the same index number formula (Laspeyres, Paasche or Fisher) for measuring both
input and output growth. This is a somewhat important result because it is sometimes
thought that using cost weights to price outputs in nonmarket sectors like health,
education and general government leads to output growth measures that are equal to input
growth measures and so that productivity improvements in these hard to measure sectors
must be nonexistent using SNA 1993 methodology.14 Proposition 2 demonstrates that
there can be productivity improvements that will show up using cost based prices,
provided that we can capture any technological improvements in the delivery of these
hard to measure services by accurately estimating the input-output coefficients for the
delivery of one unit of the service in each period.15

12 In the Appendix, we show that when we relax the fixed coefficients assumption we are using here, the
use of the Fisher index is clearly preferred over its Paasche and Laspeyres counterparts.
13 It is easy to modify the Proposition and obtain the same results if we have no technical progress in one
procedure but strict progress in the other.
14 Of course, this statement is not true as was noted above when the work of Mai (2004), Pritchard (2004)
and Atkinson (2005) in the UK was cited.
15 If it proves to be difficult or impossible to measure nonmarket output quantities, then economic
statisticians have generally measured the value of nonmarket outputs by the value of inputs used and
implicitly or explicitly set the price of nonmarket output equal to the corresponding nonmarket input price
index. Atkinson (2005; 12) describes the situation in the UK prior to 1998 as follows: “In many countries,
and in the United Kingdom from the early 1960’s to 1998, the output of the government sector has been
measured by convention as the value equal to the total value of inputs; by extension the volume of output
has been measured by the volume of inputs. This convention regarding the volume of government output is
referred to below as the (output = input) convention, and is contrasted with direct measures of government
output. The inputs taken into account in recent years in the United Kingdom are the compensation of
employees, the procurement costs of goods and services and a charge for the consumption of fixed capital.
In earlier years and in other countries, including the United States, the inputs were limited to employment.”
Note that the above conventions imply that capital services input for government owned capital will
generally be less than the corresponding capital services input if the capital services were rented or leased.
In the owned case, the government user cost of capital consists only of depreciation but in the leased case,
the rental rate would cover the cost of depreciation plus the opportunity cost of the financial capital tied up
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It can be seen that the restriction to only two procedures is not material in the above
analysis; it can readily be generalized to an arbitrary number of procedures.

Up to this point, it appears that setting prices equal to average costs16 is a reasonable
strategy when pricing medical service outputs. However, in the following section, we
show that this methodology does not give reasonable results when a new medical
technology is developed that is more efficient than an existing technology but the new
technology does not immediately displace the old technology.

3. The Introduction of a New More Efficient Technology

We now suppose that procedure 1 is a well established “incumbent” procedure which has
input-output coefficient vectors a1

0 and a1
1 in periods 0 and 1 respectively but that

procedure 2 is a “new” improved procedure that accomplishes exactly what procedure 1
accomplishes but it is only available in period 1. 17 The vector of input-output
coefficients for procedure 2 in period 1 is a2

1. The assumption that the new procedure is
more efficient than the old procedure in period 1 means that one unit of the new
procedure has a lower unit cost than one unit of the old procedure in period 1 so that

(19) w2
1a2

1 < w1
1a1

1 .

We continue to assume that the inequality (3) holds for the incumbent technology; i.e. (3)
holds for i = 1. Now we can use the period 1 input-output coefficients for the new
technology as imputed input-output coefficients for period 0 but of course, the
corresponding period 0 output and input for the new procedure, y2

0 and x2
0, should be set

equal to zero; i.e., we make the following assumptions:

(20) a2
0  a2

1 ; y2
0  0 ; x2

0  0.

We assume that the new procedure is also more efficient than the old procedure using the
input prices of period 0; i.e., we assume that:18

(21) w2
0a2

0 < w1
0a1

0.

in the capital input. Atkinson (2005; 49) makes the following recommendation on this issue: “We
recommend that the appropriate measure of capital input for production and productivity analysis is the
flow of capital services of an asset type. This involves adding to the capital consumption an interest
charge, with an agreed interest rate, on the entire owned capital.” We concur with Atkinson’s
recommendation.
16 Under our constant returns to scale assumptions being used here, these average costs are also equal to
marginal costs.
17 Paul Schreyer verbally suggested the unit value type methodology that is developed in this section.
18 There is another implicit assumption here; i.e., we are assuming that it is possible to obtain estimates of
the prices of the inputs that could have been used in period 0 if the new technology were available in period
0. Thus we are assuming that it is possible to obtain estimates of the period 0 input price vector w2

0 for the
new technology on a retrospective basis for period 0.
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The methodology developed in the previous section still seems to be satisfactory if we are
constructing input quantity indexes. However, the previous section methodology no
longer seems to be satisfactory when constructing output quantity indexes. The problem
with the old methodology is this: under our assumption that the output of the new
procedure is completely equivalent to the output of the old procedure, it is easy to see that
the “correct” output growth index should be the following unit value quantity index, QUV:

(22) QUV  (y1
1 + y2

1)/y1
0 .

However, if we compute the Laspeyres output quantity index QL defined by (10) under
our current assumptions, we find that:

(23) QL  [p1
0y1

1 + p2
0y2

1]/[p1
0y1

0 + p2
0y2

0]
= [w1

0a1
0y1

1 + w2
0a2

0y2
1]/[w1

0a1
0y1

0 + w2
0a2

0y2
0] using (9);

= [w1
0a1

0y1
1 + w2

0a2
0y2

1]/w1
0a1

0y1
0 using (20); i.e., y2

0 = 0
= [y1

1/y1
0] + [w2

0a2
0/w1

0a1
0][y2

1/y1
0] rearranging terms

< [y1
1/y1

0] + [y2
1/y1

0] using (21)
= QUV using definition (22).

Similarly, if we compute the Paasche output quantity index QP defined by (11) under our
current assumptions, we find that:

(24) QP  [p1
1y1

1 + p2
1y2

1]/[p1
1y1

0 + p2
1y2

0]
= [w1

1a1
1y1

1 + w2
1a2

1y2
1]/[w1

1a1
1y1

0 + w2
1a2

1y2
0] using (9);

= [w1
1a1

1y1
1 + w2

1a2
1y2

1]/w1
1a1

1y1
0 using (20); i.e., y2

0 = 0
= [y1

1/y1
0] + [w2

1a2
1/w1

1a1
1][y2

1/y1
0] rearranging terms

< [y1
1/y1

0] + [y2
1/y1

0] using (19)
= QUV using definition (22).

But (23) and (24) imply the following result as well:

(25) QF < QUV.

Thus if the new procedure has an output that is equivalent to the existing procedure, then
use of the cost based output price methodology developed in the previous section will
give Laspeyres, Paasche and Fisher output growth indexes that are biased downwards
compared to the conceptually correct unit value output growth index defined by (22).
Hence under the assumptions of this section, the methodology developed in the previous
section will lead to estimates of output growth and productivity growth that are biased
downwards.

The bias that results from the incorrect measurement of the effects of the introduction of
a new and more efficient procedure is similar in many respects to new outlets bias; i.e., a
new output is linked into an index in such a way that the index shows no change when in



9

fact, a change should be recorded.19 The methodology for dealing with a new procedure
developed above is relatively straightforward and is reproducible and objective under the
assumptions of the model. However, in the real world, a new procedure is unlikely to
have an output that is exactly equivalent to the output of an existing procedure and hence
in real life, it will not be so straightforward to deal with new medical procedures.

4. Conclusion

The valuation of outputs produced by the nonmarket sector is a complicated task. A first
best solution would be to have unambiguous, objective and reproducible final demand
prices but this solution is generally not available to statistical agencies. A second best
solution is to value outputs at their average costs as is recommended in SNA 1993.20 We
have developed the algebra associated with this second approach and found (not
surprisingly) that it is possible to have Total Factor Productivity growth using this
methodology, provided that sufficient information is available.

It should be noted that the methodology developed here is applicable to a wide variety of
industries that are either entirely nonmarket, or partially nonmarket, as in the case of
regulated industries.21

Appendix: The Measurement of Output, Input and Productivity in the Nonmarket
Sector for More General Production Functions

In this Appendix, we will relax the assumption that the procedure production functions
are of the fixed coefficients, no input substitution variety. Theoretical output, input and
productivity indexes will be defined in this more general context and we will exhibit
various observable indexes that can approximate these theoretical indexes to the accuracy
of at least a first order approximation.

As in section 2, we assume that there are two procedures in periods 0 and 1 but now we
assume that there is a production function, fi

t, for procedure i in period t where yi
t =

fi
t(xi1

t,xi2
t,...,xiN(i)

t) = fi
t(xi

t) is the amount of output for procedure i that can be produced
by the input vector xi

t in period t for t = 0,1 and i = 1,2. We assume that each production
function fi

t(xi) is a nonnegative, increasing, continuous, concave and linearly
homogeneous function in the components of its input vector xi. As in section 2, we
assume that in each period t, producers in sector i face the positive vector of input prices,
wi

t  [wi1
t,wi2

t,...,wiN(i)
t] for i = 1,2 and t = 0,1. For each period t and each sector i, the

sector i total cost function Ci
t(yi,wi) associated with each procedure can be defined as

follows:

19 For discussions on how to account for outlet substitution bias in the context of a consumer price index,
see Diewert (1995) (1998) and Chapter 11 in the ILO (2004).
20 See sections 16.133-16.135 in the SNA 1993.
21 With the growth of incentive type regulatory regimes, there is increasing interest in forming output
aggregates using marginal cost weights for prices in order to calculate the Total Factor Productivity growth
of regulated firms; see Lawrence and Diewert (2006) for an extensive discussion of the issues. It should be
noted that Lawrence and Diewert assumed separable technologies of the type considered in this paper.
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(A1) Ci
t(yi,wi)  min x’s {wixi : fi

t(xi)  yi} ; i = 1,2 ; t = 0,1
= ci

t(wi)yi

where ci
t(wi)  Ci

t(1,wi) is the period t unit cost function for sector i; i.e., it is equal to the
minimum cost of producing one unit of sector i output using the period t technology if the
sector faces the vector of input prices wi. The unit cost function ci

t will satisfy the same
regularity conditions as the production function fi

t; i.e., ci
t(wi) will be a nonnegative,

increasing, continuous, concave and linearly homogeneous function in the components of
the input price vector wi.

22

We assume that in each period, producers minimize the cost of producing their procedure
outputs.23 Thus letting yi

t and xi
t denote the observed scalar output and input vector of

sector i in period t, we will have the following equalities:

(A2) wi
txi

t = Ci
t(yi

t,wi
t) = ci

t(wi
t)yi

t ; i = 1,2 ; t = 0,1.

We also assume that each unit cost function is differentiable at the observed input prices
for each sector and each period so that Shephard’s (1953; 11) Lemma implies the
following relationships between the input quantity vectors xi

t and the corresponding
output levels yi

t:

(A3) xi
t = wCi

t(yi
t,wi

t) = wci
t(wi

t)yi
t ; i = 1,2 ; t = 0,1.

The observed input-output vectors ai
t for each sector i and each time period can be

defined as the observed input vectors xi
t divided by the corresponding output levels yi

t:

(A4) ai
t  xi

t/yi
t ; i = 1,2 ; t = 0,1.

Comparing (A3) with (A4) shows that the vectors of first order partial derivatives of the
unit cost functions, wci

t(wi
t), are also observable and are equal to the corresponding

input-output vectors ai
t:

(A5) wci
t(wi

t) = ai
t ; i = 1,2 ; t = 0,1.

The period t unit cost for sector i, ci
t(wi

t), are also observable and can serve as our cost
based output prices pi

t for units of output in sector i during period t; i.e., define the output
prices pi

t as follows:

(A6) pi
t  ci

t(wi
t) = wi

tai
t = wi

txi
t/yi

t ; i = 1,2 ; t = 0,1.

22 For background information on cost and production functions and their regularity conditions, see Diewert
(1974).
23 Obviously, in many situations where governments are in charge of producing the procedure outputs, this
assumption will not be satisfied. However, in order to make some progress on our index number problems,
we will make this assumption.
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Definitions (A6) imply the following relationships between the value of output pi
tyi

t and
the value of input wi

txi
t in sector i for period t:

(A7) pi
tyi

t = ci
t(wi

t)yi
t = wi

txi
t ; i = 1,2 ; t = 0,1.

We now in a position to define the health sector’s period t total cost function, Ct, but first
we require some further notation. Let y  [y1,y2] be a two dimensional reference vector
of possible health sector outputs and let w  [w1,w2] be an N(1)+N(2) dimensional vector
of reference input prices. Define the health sector’s period t total cost function Ct as the
sum of the period t procedure cost functions:

(A8) Ct(y,w)  C1
t(y1,w1) + C2

t(y2,w2) ; t = 0,1
= c1

t(w1)y1 + c2
t(w2)y2 using (A2).

We will use the sector’s total cost function Ct(y,w) in order to define indexes of health
sector technical progress, output growth and input price growth going from period 0 to
period 1 in what follows.24 As a preliminary step, insert the data pertaining to period t
into definition (A8) and we obtain the following equations:

(A9) Ct(yt,wt) = c1
t(w1

t)y1
t + c2

t(w2
t)y2

t ; t = 0,1
= w1

tx1
t + w2

tx2
t using (A7)

= p1
ty1

t + p2
ty2

t using (A6).

We now use the total cost function in order to define a family of cost based output
quantity indexes, (y0,y1,w,t), as follows:

(A10) (y0,y1,w,t)  Ct(y1,w)/Ct(y0,w)
= [c1

t(w1)y1
1 + c2

t(w2)y2
1]/[c1

t(w1)y1
0 + c2

t(w2)y2
0] using (A8).

Thus the theoretical output quantity index (y0,y1,w,t) defined by (A10) is equal to the
(hypothetical) total cost Ct(y1,w) of producing the vector of observed period 1 procedure
outputs, y1  [y1

1,y2
1], divided by the total cost Ct(y0,w) of producing the vector of

observed period 0 procedure outputs, y0  [y1
0,y2

0], where in both cases, we use the
technology of period t and assume that the service providers face the vector of reference
input prices, w  [w1,w2], where wi is a reference vector of input prices for sector i. Thus
for each choice of technology (i.e., t could equal 0 or 1) and for each choice of a
reference vector of input prices w, we obtain a (different) cost based output quantity
index.

Following the example of Konüs (1939), it is natural to single out two special cases of the
family of output quantity indexes defined by (A10): one choice where we use the period
0 technology and set the reference prices equal to the period 0 input prices w0  [w1

0,w2
0]

24 Our approach is a reasonably straightforward adaptation of the earlier work on theoretical price and
quantity indexes by Konüs (1939), Fisher and Shell (1972), Samuelson and Swamy (1974), Archibald
(1977) and Diewert (1980; 461) (1983; 1054-1083).
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and another choice where we use the period 1 technology and set the reference prices
equal to the period 1 input prices w1  [w1

1,w2
1]. Thus define these special cases as 0

and 1:

(A11) 0  (y0,y1,w0,0)
= [c1

0(w1
0)y1

1 + c2
0(w2

0)y2
1]/[c1

0(w1
0)y1

0 + c2
0(w2

0)y2
0] using (A10)

= [p1
0y1

1 + p2
0y2

1]/[p1
0y1

0 + p2
0y2

0] using (A6)
= QL using (10);

(A12) 1  (y0,y1,w1,1)
= [c1

1(w1
1)y1

1 + c2
1(w2

1)y2
1]/[c1

1(w1
1)y1

0 + c2
1(w2

1)y2
0] using (A10)

= [p1
1y1

1 + p2
1y2

1]/[p1
1y1

0 + p2
1y2

0] using (A6)
= QP using (11).

Thus the theoretical cost based output quantity index 0 that uses the period 0 technology
and period 0 input prices w0 is equal to the observable Laspeyres output quantity index
QL that was defined earlier in the main text by (10) and the theoretical cost based output
quantity index 1 that uses the period 1 technology and period 1 input prices w1 is equal
to the observable Paasche output quantity index QP that was defined earlier by (11).
Since both theoretical output quantity indexes, 0 and 1, are equally representative, a
single estimate of cost based output quantity growth should be set equal to a symmetric
average of these two estimates. We will choose the geometric mean as our preferred
symmetric average25 and thus our preferred theoretical measure of cost based output
quantity growth is the following Fisher type theoretical index, F:

(A13) F  [01]
1/2

= [QLQP]1/2 using (A11) and (A12)
= QF using definition (12).

Thus our preferred measure of cost based output growth is equal to the observable Fisher
quantity index, QF. which was defined earlier by (12) in the main text.

We now turn our attention to theoretical measures of input price growth. We now use the
total cost function in order to define a family of input price indexes, (w0,w1,y,t), as
follows:

(A14) (w0,w1,y,t)  Ct(y,w1)/Ct(y,w0)
= [c1

t(w1
1)y1 + c2

t(w2
1)y2]/[c1

t(w1
0)y1 + c2

t(w2
0)y2] using (A8).

Thus the theoretical input price index (w0,w1,y,t) defined by (A14) is equal to the
(hypothetical) total cost Ct(y,w1) of producing the reference vector of outputs, y  [y1,y2],
when the service providers face the period 1 observed vector of input prices w1, divided
by the total cost Ct(y,w0) of producing the same reference vector of outputs, y, when the
service providers face the period 0 observed vector of input prices w0, where in both

25 Diewert (1997) explained why the geometric mean is a good choice for the symmetric average.
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cases, we use the technology of period t. Thus for each choice of technology (i.e., t could
equal 0 or 1) and for each choice of a reference vector of output quantities y, we obtain a
(different) input price index.

Again following the example of Konüs (1939) in his analysis of the true cost of living
index, it is natural to single out two special cases of the family of input price indexes
defined by (A14): one choice where we use the period 0 technology and set the reference
quantities equal to the period 0 quantities y0  [y1

0,y2
0] and another choice where we use

the period 1 technology and set the reference quantities equal to the period 1 quantities y1

 [y1
1,y2

1]. Thus define these special cases as 0 and 1:

(A15) 0  (w0,w1,y0,0)
= [c1

0(w1
1)y1

0 + c2
0(w2

1)y2
0]/[c1

0(w1
0)y1

0 + c2
0(w2

0)y2
0] using (A14)

= [c1
0(w1

1)y1
0 + c2

0(w2
1)y2

0]/[w1
0x1

0 + w2
0x2

0] using (A9);

(A16) 1  (w0,w1,y1,1)
= [c1

1(w1
1)y1

1 + c2
1(w2

1)y2
1]/[c1

1(w1
0)y1

1 + c2
1(w2

0)y2
1] using (A14)

= [w1
1x1

1 + w2
1x2

1]/[c1
1(w1

0)y1
1 + c2

1(w2
0)y2

1] using (A9).

We now encounter a problem: the hypothetical unit costs ci
0(wi

1) and ci
1(wi

0) which
appear in (A15) and (A16) are not observable so we cannot calculate the theoretical input
price indexes 0 and 1. However, we can find bounds to these indexes as well as first
order Taylor series approximations to them, which are observable, as we now show.

As mentioned above, the unit cost functions, ci
t(wi) are concave functions in their input

price variables wi. It is well known that the first order Taylor series approximation to a
concave function lies above (or is coincident with) the concave function26 so we have the
following inequalities:

(A17) ci
0(wi

1)  ci
0(wi

0) + w ci
0(wi

0)[wi
1  wi

0] ; i = 1,2
= wi

1w ci
0(wi

0) since wi
1w ci

0(wi
0) = ci

0(wi
0)27

= wi
1ai

0 using (A5).

The gap between the right and left hand sides of (A17) represents input substitution bias.
In the main text, we assumed Leontief no substitution type procedure production
functions and so there was no substitution bias; i.e., under our main text assumptions, the
inequalities in (A17) were equalities. Now multiply both sides of inequality i in (A17) by
yi

0 and we obtain the following inequalities:

(A18) ci
0(wi

1)yi
0  wi

1ai
0yi

0 ; i = 1,2
= wi

1xi
0 using (A4).

26 See Fenchel (1953) or Mangasarian (1969; 84).
27 This follows from Euler’s Theorem on homogeneous functions and the fact that ci

0(wi) is linearly
homogeneous in the components of the input price vector wi.
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In a similar fashion, we can establish the following inequalities:

(A19) ci
1(wi

0)yi
1  wi

0xi
1 ; i = 1,2.

We now return to the theoretical input price indexes defined by (A15) and (A16). From
(A15), we have:

(A20) 0 = [c1
0(w1

1)y1
0 + c2

0(w2
1)y2

0]/[w1
0x1

0 + w2
0x2

0]
 [w1

1x1
0 + w2

1x2
0]/[w1

0x1
0 + w2

0x2
0] using (A18)

 PL
*

where the observable Laspeyres input price index PL
* is defined as [w1

1x1
0 +

w2
1x2

0]/[w1
0x1

0 + w2
0x2

0]. Similarly, from (A16), we have:

(A21) 1 = [w1
1x1

1 + w2
1x2

1]/[c1
1(w1

0)y1
1 + c2

1(w2
0)y2

1]
 [w1

1x1
1 + w2

1x2
1]/[w1

0x1
1 + w2

0x2
1] using (A19)

 PP
*

where the observable Paasche input price index PP
* is defined as [w1

1x1
1 +

w2
1x2

1]/[w1
0x1

1 + w2
0x2

1]. Thus the theoretical input price index 0 is bounded from
above by the observable Laspeyres input price index PL

* and the theoretical input price
index 1 is bounded from below by the observable Paasche input price index PP

*. In both
cases, the gap between the theoretical index and the observable index is due to input
substitution bias, which goes in opposite directions.

Looking at the first line in (A17), it can be seen that the right hand sides of (A18) and
(A19) are first order Taylor series approximations to the corresponding left hand side
entries. This means that PL

* is a first order approximation to the theoretical input price
index 0 and PP

* is a first order approximation to the theoretical input price index 1.

Since both theoretical input price indexes, 0 and 1, are equally representative, a single
estimate of input price change should be set equal to a symmetric average of these two
estimates. We again choose the geometric mean as our preferred symmetric average and
thus our preferred theoretical measure of input price growth is the following Fisher type
theoretical index, F:

(A22) F  [01]
1/2

 [PL
*PP

*]1/2

 PF
*

where the Fisher (1922) index of input price change, PF
*, is defined as the geometric

mean of the Laspeyres and Paasche input price indexes. Given the fact that PL
* is a first

order approximation to 0 and PP
* is a first order approximation to 1, it is obvious that

PF
* is at least a first order approximation to the theoretical input price index F. But in
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most cases, the approximation of PF
* to F will be much better than a first order

approximation since the upward bias in PL
* will generally offset the downward bias in PP

*.

We now define our last family of theoretical indexes. We again use the total cost
function in order to define a family of reciprocal indexes of technical progress, (y,w), as
follows:

(A23) (y,w)  C1(y,w)/C0(y,w)
= [c1

1(w1)y1 + c2
1(w2)y2]/[c1

0(w1)y1 + c2
0(w2)y2] using (A8).

The theoretical reciprocal technical progress index (y,w) defined by (A23) is equal to
the (hypothetical) total cost C1(y,w) of producing the reference vector of outputs, y 
[y1,y2], when the service providers face the reference vector of input prices w using the
period 1 technology, divided by the total cost C0(y,w) of producing the same reference
vector of outputs, y, and facing the same reference vector of input prices w, where we
now use the period 0 technology. 28 Thus (y,w) is a measure of the proportional
reduction in costs that occurs due to technical progress between periods 0 and 1 and it
can be seen that this is an inverse measure of technical progress. For each choice of a
reference vector of output quantities y and reference vector of input prices w, we obtain a
(different) measure of exogenous cost reduction.

Instead of singling out the reference vectors y and w that appear in the definition of
(y,w) to be the period t quantity and price vectors (yt,wt) for t = 0,1, we will choose the
mixed vectors (y0,w1) and (y1,w0) for special attention. The reason for these rather odd
looking choices will be explained below.

We want to explain the growth in total costs going from period 0 to 1,
C1(y1,w1)/C0(y0,w0), as the product of 3 growth factors:

 Growth in outputs; i.e., a factor of the form (y0,y1,w,t) defined above by (A10);
 Growth in input prices; i.e., a factor of the form (w0,w1,y,t) defined by (A14)

and
 Exogenous reduction in costs due to technical progress; i.e., a factor of the form

(y,w) defined by (A23).

Simple algebra shows that we have the following decompositions of the cost ratio
C1(y1,w1)/C0(y0,w0) into explanatory factors of the above type:29

(A24) C1(y1,w1)/C0(y0,w0)
= [C1(y1,w1)/C1(y0,w1)][C0(y0,w1)/C0(y0,w0)][C1(y0,w1)/C0(y0,w1)]
= 10(y

0,w1) using definitions (A12), (A15) and (A23);

28 This is a cost function analogue to the revenue function definitions of technical progress defined by
Diewert (1983; 1063-1064), Diewert and Morrison (1986) and Kohli (1990).
29 The decompositions of cost growth given by (A24) and (A25) are nonparametric analogues to the
parametric revenue growth decompositions obtained by Diewert and Morrison (1986), Kohli (1990), (1991)
(2003) and Fox and Kohli (1998) into explanatory factors.
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(A25) C1(y1,w1)/C0(y0,w0)
= [C0(y1,w0)/C0(y0,w0)][C1(y1,w1)/C1(y1,w0)][C1(y1,w0)/C0(y1,w0)]
= 01(y

1,w0) using definitions (A11), (A16) and (A23).

The above decompositions show that the two special cases of (y,w) defined by (A23) of
particular interest are defined by (A26) and (A27) below:

(A26) (y0,w1)  C1(y0,w1)/C0(y0,w1) using (A23)
= [c1

1(w1
1)y1

0 + c2
1(w2

1)y2
0]/[c1

0(w1
1)y1

0 + c2
0(w2

1)y2
0] using (A8);

(A27) (y1,w0)  C1(y1,w0)/C0(y1,w0) using (A23)
= [c1

1(w1
0)y1

1 + c2
1(w2

0)y2
1]/[c1

0(w1
0)y1

1 + c2
0(w2

0)y2
1] using (A8).

We will now work out observable first order approximations (and observable bounds) to
the two specific measures of reciprocal technical progress defined by (A26) and (A27).
From the second equation in (A26), we have:

(A28) C1(y0,w1) = c1
1(w1

1)y1
0 + c2

1(w2
1)y2

0

= p1
1y1

0 + p2
1y2

0 using (A6)
= p1y0.

Since C0(y0,w) is concave in the components of the input price vector w, C0(y0,w)
regarded as a function of w will be bounded from above by its first order Taylor series
approximation around the point w0 so the following inequality will be satisfied:

(A29) C0(y0,w1)  C0(y0,w0) + wC0(y0,w0)[w1  w0]
= w1wC0(y0,w0) since w0wC0(y0,w0) = C0(y0,w0)30

= w1
1x1

0 + w2
1x2

0 using (A3) and (A8)
 w1x0.

Thus the period 0 total cost function C0(y0,w1), evaluated at the vector of period 0
observed outputs y0 and the period 1 observed input prices w1, is bounded from above by
the inner product of the period 1 input price vector w1 and the observed vector of inputs
for period 0, x0.31 Note also from the first line of (A29) that w1x0 is a first order Taylor
series approximation to the unobserved cost C0(y0,w1). The results (A28) and (A29) can
now be used in order to form a bound (and a first order approximation) to the measure of
reciprocal technical progress (y0,w1) defined by (A26):

(A30) (y0,w1) = C1(y0,w1)/C0(y0,w1)
 p1y0/w1x0 using (A28) and (A29)

30 This follows from Euler’s Theorem on homogeneous functions and the fact that C0(y0,w) is linearly
homogeneous in the components of the input price vector w.
31 This result can also be established by noting that x0 is a feasible (but not necessarily optimal) solution to
the industry cost minimization problem defined by C0(y0,w1).
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= [p1y0/p1y1]/[w1x0/w1x1] using (A7) for t = 1
= [w1x1/w1x0]/[p1y1/p1y0] rearranging terms
= QP

*/QP using (7) and (11)
= [QP/QP

*]1

where QP is the Paasche output quantity index defined by (11) and QP
* is the Paasche

input quantity index defined by (7) in the main text. Note that QP divided by QP
* is the

Paasche productivity index. Thus (A30) tells us that the theoretical measure of reciprocal
technical progress defined by (A26), (y0,w1), is bounded from below by the reciprocal of
the observable Paasche productivity index, QP/QP

*. Moreover, it can be seen that
[QP/QP

*]1 is also a first order approximation to the theoretical index (y0,w1).

The above algebra can be repeated with minor modifications in order to derive a bound
for the theoretical index (y1,w0) defined by (A27). Thus we have:

(A31) C0(y1,w0) = c1
0(w1

0)y1
1 + c2

0(w2
0)y2

1

= p1
0y1

1 + p2
0y2

1 using (A6)
= p0y1.

Since C1(y1,w) is concave in the components of the input price vector w, C1(y1,w)
regarded as a function of w will be bounded from above by its first order Taylor series
approximation around the point w1 so the following inequality will be satisfied:

(A32) C1(y1,w0)  C1(y1,w1) + wC1(y1,w1)[w0  w1]
= w0wC1(y1,w1) since w1wC1(y1,w1) = C1(y1,w1)
= w1

0x1
1 + w2

0x2
1 using (A3) and (A8)

 w0x1.

Thus the period 1 total cost function C1(y1,w0), evaluated at the vector of period 1
observed outputs y1 and the period 0 observed input prices w0, is bounded from above by
the inner product of the period 0 input price vector w0 and the observed vector of inputs
for period 1, x1.32 Note also from the first line of (A32) that w0x1 is a first order Taylor
series approximation to the unobserved cost C1(y1,w0). The results (A31) and (A32) can
now be used in order to form a bound (and a first order approximation) to the measure of
reciprocal technical progress (y1,w0) defined by (A27):

(A33) (y1,w0) = C1(y1,w0)/C0(y1,w0)
 w0x1/p0y1 using (A31) and (A32)
= [w0x1/w0x0]/[p0y1/p0y0] using (A7) for t = 0
= QL

*/QL using (6) and (10)
= [QL/QL

*]1

32 This result can also be established by noting that x1 is a feasible (but not necessarily optimal) solution to
the industry cost minimization problem defined by C1(y1,w0).
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where QL is the Laspeyres output quantity index defined by (10) and QL
* is the Laspeyres

input quantity index defined by (6) in the main text. Note that QL divided by QL
* is the

Laspeyres productivity index. Thus (A33) tells us that the theoretical measure of
reciprocal technical progress defined by (A27), (y1,w0), is bounded from above by the
reciprocal of the observable Laspeyres productivity index, QL/QL

*. Moreover, it can be
seen that [QL/QL

*]1 is also a first order approximation to the theoretical index (y1,w0).

Since the two cost decompositions for the rate of growth of cost, C1(y1,w1)/C0(y0,w0),
given by (A24) and (A25) are equally valid, we will take the geometric average of these
two decompositions to obtain our preferred overall cost decomposition. This leads to the
following theoretical decomposition of C1(y1,w1)/C0(y0,w0) into explanatory factors:

(A34) C1(y1,w1)/C0(y0,w0) = FF F

where the Fisher type output quantity growth factor F is defined by (A13), the Fisher
type input price growth factor F is defined by (A22) and the Fisher type reciprocal
measure of technical progress F is defined as follows:

(A35) F  [(y0,w1)(y1,w0)]1/2.

Using our first order approximations given by (A30) and (A33), it can be seen that an
observable first order approximation to F is the reciprocal of the Fisher productivity
index QF/QF

*; i.e., we have:

(A36) F  {[QP
*/QP][QL

*/QL]}1/2 using (A30) and (A33)
= [QF

*/QF] using (8) and (12)
= [QF/QF

*]1.

However, since the substitution biases in the first order approximations given by (A30)
and (A33) go in opposite directions, the approximation to the theoretical index F given
by the right hand side of (A36) will generally be much closer than a first order
approximation.

We now combine the theoretical cost decomposition defined by (A34) with the exact
result (A13) and the approximate results (A22) and (A36):

(A37) C1(y1,w1)/C0(y0,w0) = FF F using (A34)
 QF PF

* [QF/QF
*]1 using (A13), (A22) and (A36).

Thus (one plus) the rate of growth of industry cost, C1(y1,w1)/C0(y0,w0), is approximately
equal to (one plus) the rate of output growth defined by the Fisher output quantity index,
QF, times (one plus) the rate of growth of input prices defined by the Fisher input price
index, PF

*, times the reciprocal of (one plus) the Fisher rate of productivity growth,
QF/QF

*. However, it turns out that the left hand side of (A37) is identically equal to the
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product of the explanatory factors on the right hand side of (A37), since it can be shown
that the following identity holds:33

(A38) [C1(y1,w1)/C0(y0,w0)]/PF
* = QF

*;

i.e., the Fisher implicit input quantity index, [w1x1/w0x0]/PF
*, is equal to the direct Fisher

input quantity index, QF
*.

Note that the above results are entirely nonparametric. Thus we have generalized (to a
reasonable degree of approximation) the results derived in the main text under the
assumption that the procedure production functions were of the no substitution variety to
the case where the procedure production functions are general ones.

It is possible to further generalize our results from the case where the procedure functions
are independent to the case where there are shared overheads between the procedures.34

In this more general framework, the health sector’s period t total cost function Ct(y,w) is
no longer defined as the sum of the two procedure cost functions, C1

t(y1,w1) plus
C2

t(y2,w2) as in (A8), but is simply a general nonjoint cost function. The regularity
conditions that we impose on each Ct(y,w) is that it is a nonnegative, jointly continuous
differentiable function in its variables (y,x) and that it is linearly homogeneous 35 ,
nondecreasing and convex 36 in the components of y for fixed w and linearly
homogeneous, nondecreasing and concave in the components of w for each fixed y. As
usual, we assume cost minimizing behavior in periods t = 0,1 and that we can observe the
period t industry output vector, yt  [y1

t,y2
t], the period t aggregate input vector xt 

[x1
t,x2

t] and the corresponding vector of input prices wt  [w1
t,w2

t] for t = 0,1. As usual,
Shephard’s Lemma tells us that the period t vector of inputs is equal to the vector of first
order partial derivatives of the period t cost function with respect to the components of
the input price vector; i.e., we have:

(A39) xt = w Ct(yt,wt) ; t = 0,1.

The period t vector of marginal cost output prices pt  [p1
t,p2

t] is defined as the vector of
first order partial derivatives of the period t cost function with respect to the components
of the output vector:

(A40) pt  y Ct(yt,wt) ; t = 0,1.

It should be noted that the linear homogeneity properties of Ct(y,w) in y and w separately
imply the following equalities:

(A41) Ct(yt,wt) = wtxt = ptyt ; t = 0,1.

33 See Fisher (1922).
34 Yu (2008) uses this joint cost function framework to measure health and other nonmarket outputs.
35 This assumption means that the overall technology is subject to constant returns to scale; i.e., the period t
technology set St is a cone.
36 This restriction means that the overall technology set St is a convex set.
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We can now modify the above analysis in this appendix, letting the marginal cost prices
pt defined by (A40) replace our old unit cost prices.

In particular, we use the first line in (A10) in order to define a new family of cost based
output quantity indexes as (y0,y1,w,t)  Ct(y1,w)/Ct(y0,w) and we again use the first line
in (A11) and (A12), to define the two specific output quantity indexes 0 as (y0,y1,w0,0)
and 1 as (y0,y1,w1,1). However, in our new more general model, we no longer obtain
the equalities in (A11) and (A12); instead, we obtain the following first order
approximations and bounds:

(A42) 0  C0(y1,w0)/C0(y0,w0)
= C0(y1,w0)/p0y0 using (A41)
 {C0(y0,w0) + y C0(y0,w0)[y1  y0]}/p0y0

using the convexity of C0(y,w0) in y37

= y C0(y0,w0)y1/p0y0 using y C0(y0,w0)y0 = C0(y0,w0)
= p0y1/p0y0 using (A40) for t = 0
= QL using (10);

(A43) 1  C1(y1,w1)/C1(y0,w1)
= p1y1/C1(y0,w1) using (A41)
 p1y1/{C1(y1,w1) + y C1(y1,w1)[y0  y1]} using the convexity of C1(y,w1) in y
= p1y1/{y C1(y1,w1)y0} using y C1(y1,w1)y1 = C1(y1,w1)
= p1y1/p1y0 using (A40) for t = 1
= QP using definition (11).

Thus the ordinary Laspeyres output quantity index QL (using marginal cost prices) is no
longer equal to the theoretical output index 0 defined by the first line in (A42) but is
only a first order approximation and a lower bound. Similarly, ordinary Paasche output
quantity index QP (using marginal cost prices) is no longer equal to the theoretical output
index 1 defined by the first line in (A43) but is only a first order approximation and an
upper bound to this theoretical output quantity index. However, as before, the Fisher
theoretical output quantity index F defined as the geometric mean of 0 and 1 will be
approximated by the Fisher output quantity index, QF  [QLQP]1/2, and due to the
offsetting substitution biases in (A42) and (A43), QF will generally approximate F to an
accuracy that is greater than a first order approximation.

The analysis associated with (A14)-(A22) goes through with obvious modifications using
our more general model and so we will not repeat this analysis.

We can again define the family of reciprocal indexes of technical progress using the first
line in (A23) as (y,w)  C1(y,w)/C0(y,w). As before, the factorizations of cost growth
given by (A24) and (A25) continue to be valid in this more general framework and so we

37 The first order Taylor series approximation to a convex function lies below (or is coincident with) the
function.
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need empirically observable approximations to the two indexes of technical progress
defined by (A26) and (A27). The inequalities in (A29) and (A32) continue to be valid
but the equalities in (A28) and (A31) are no longer valid in our more general model and
need to be replaced by the following inequalities which were derived in (A43) and (A42):

(A44) C1(y0,w1)  C1(y1,w1) + y C1(y1,w1)[y0  y1]}
= p1y0 ;

(A45) C0(y1,w0)  C0(y0,w0) + y C0(y0,w0)[y1  y0]
= p0y1.

Using definition (A26) and the inequalities (A29) and (A44) establishes the following
inequality:

(A46) (y0,w1) = C1(y0,w1)/C0(y0,w1) using definition (A26)
 p1y0/w1x0 using (A44) and (A29)
= [p1y0/p1y1]/[w1x0/w1x1] using (A41) for t = 1
= QP

*/QP using (7) and (11)
= [QP/QP

*]1.

Similarly, using definition (A27) and the inequalities (A29) and (A44) establishes the
following inequality:

(A47) (y1,w0)  C1(y1,w0)/C0(y1,w0) using definition (A27)
 w0x1/p0y1 using (A32) and (A45)
= [w0x1/w0x0]/[p0y1/p0y0] using (A41) for t = 0
= QL

*/QL using (6) and (10)
= [QL/QL

*]1.

As before, define the Fisher type reciprocal measure of technical progress F by (A35).
The rest of the above analysis goes through with minor modifications. In particular, we
still obtain the cost decomposition (A37) as the following exact equality:38

(A48) C1(y1,w1)/C0(y0,w0) = FF F

= QF PF
* [QF/QF

*]1.

Note that it is risky to use either the Laspeyres or Paasche measures of productivity
growth to approximate the corresponding theoretically correct measure of productivity
growth since there are two doses of substitution bias between the left hand and right hand
sides of (A46) and (A47); i.e., the output and input substitution biases augment each
other when we use Paasche or Laspeyres productivity indexes instead of offsetting each

38 However, in general, QF will not be exactly equal to its theoretical counterpart F and PF
* will not be

exactly equal to its theoretical counterpart F. But when the three empirical growth factors are multiplied
together, the various approximation errors cancel out to give an overall exact decomposition.
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other. Thus whenever possible, we recommend the use of Fisher productivity indexes
rather than the use of their Paasche or Laspeyres counterparts.

The reader may well wonder why we did not proceed directly to our final most general
model of production instead of doing the additive cost model defined by (A8) where no
joint costs were present. The problem is that our most general model requires estimates
of marginal cost prices in order to implement the practical approximations to the
theoretical indexes. Unfortunately, econometric estimation of joint cost functions will
generally be required in order to estimate these marginal cost prices and econometric
estimation of joint cost functions with general technical progress and the use of flexible
functional forms is a generally hazardous exercise!
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